US009223969B2

a2z United States Patent (10) Patent No.: US 9,223,969 B2
Yoo (45) Date of Patent: Dec. 29, 2015
(54) ANTI-MALWARE SYSTEM AND OPERATING 2007/0240219 Al1* 10/2007 Tuvelletal. 726/24
METHOD THEREOF 2008/0239956 Al 10/2008 Okholm et al.
2009/0044275 Al 2/2009 Takahashi et al.
(75) Inventor: InSeon Yoo, Osan-Si (KR) 2010/0088759 Al* 4/2010 Abzarianetal. 726/21
2010/0138909 Al 6/2010 Chen et al.
(73) Assignee: SAMSUNG SDS CO., LTD., Seoul
(KR) FOREIGN PATENT DOCUMENTS
(*) Notice: Subject to any disclaimer, the term of this iI(PR 2(1)880%;1)25 gl 1%%885
patent is extended or adjusted under 35
U.S.C. 154(b) by 629 days. OTHER PUBLICATIONS
(21) Appl. No.: 13/154,756 Chen, Z. et., al. “AntilWorm NPU-based Parallel Bloom Filters for
o TCP/IP Content Processing in Giga-Ethernet LAN”, Proceedings of
(22) Filed: Jun. 7, 2011 the IEEE Conference on Local Computer Networks 30th Anniver-
(65) Prior Publication Data sary, The Computer Society, Nov. 15, 2005, pp. 1-8.
European Search Reportissued on Oct. 25,2011 in the corresponding
US 2011/0302648 Al Dec. 8, 2011 European Patent Application No. 11168862.8.
(30) Foreign Application Priority Data (Continued)
Jun. 7,2010 (KR) .occveiviieine 10-2010-0053371
Jun. 18,2010 (KR) 10-2010-0057824 Primary Examiner — Brandon Hoffman
May 30,2011 (KR) 10-2011-0051706 Assistant Examiner — Nega Woldemariam
(51) Int.CL (74) Attorney, Agent, or Firm — Sughrue Mion, PLLC
GO6F 11/00 (2006.01)
GO6F 21/55 (2013.01)
GOGF 21/56 (2013.01) (7 ABSTRACT
HO4L 29/06 (2006.01) Provided are an anti-malware system, and an operating
(52) ICJPSC CL GOSF 21/554 (2013.01): GOGF 21/564 method thereof. The anti-malware system matches an filter-
"""""" 2013.01 '(H04I; 63)}145 2013.01 ing operation on first target data to be filtered with a rule
581 Field of Classifi (. S); h (0D pattern, performs a filtering operation on the first target data
(58) Field of Classification Searc according to a matching result, matches second target data to
CPC GOGF 21/554; GOGF 21/564; HO4L 63/145 ;
See aﬁ.};lica tion file for,comple (e searc,h history be malware-scanned with a malware pattern, and performs a
’ malware scanning operation on the second target data accord-
(56) References Cited ing to a matching result, wherein the filtering operation and

U.S. PATENT DOCUMENTS

6,205,552 Bl 3/2001 Fudge

7,523,500 Bl 4/2009 Szor et al.
2007/0011734 Al 1/2007 Balakrishnan et al.
2007/0240218 Al 10/2007 Tuvell et al.

the scanning operation are performed on a system-on-chip
(SoC).

44 Claims, 30 Drawing Sheets
(6 of 30 Drawing Sheet(s) Filed in Color)

10 .
- P ®
/_/
g
DATA & ADDRESS o
MOBILE S — e e
PROCESSCR § READ & WRITE, GONTROL -
N
GPIQ
ANTHMALWARE o
SYSTEM
20
-
e
" Wi
DEBUG
P
o G0
125 5
vy ~
I0RAM FLASH
MEMORY

US 9,223,969 B2
Page 2

(56) References Cited

OTHER PUBLICATIONS

Lim, H. et., al. “Tuple Prunning Using Bloom Filters for Packet
Classification”, Published by the IEEE Computer Society, May 1,
2010, pp. 48-58.

Lockwood, J. W. et., al. “An Extensible, System-On-Programmable-
Chip, Content-Aware Internet Firewall”, Jan. 1, 2003, 10 pages total.
Sourdis, I. et., al. “Packet Pre-filtering for Network Intrusion Detec-
tion”, ANCS"06, Dec. 3-5, 2006, pp. 183-192.

Communication dated Oct. 29, 2012 issued by the Korean Intellec-
tual Property Office in counterpart Korean Patent Application No.
10-2011-0051706.

Communication, dated Jan. 30, 2012, issued by the European Patent
Office in corresponding European Application No. 11168862.8.
Office Action issued by the Korean Patent Office dated May 19, 2011
in a counterpart application No. 10-2010-0057824.
Communication, dated Jul. 9, 2013, issued by the Japanese Patent
Office in counterpart Japanese Patent Application No. 2011-127380.

* cited by examiner

US 9,223,969 B2

Sheet 1 of 30

Dec. 29, 2015

U.S. Patent

| Adonan

| HSY
\0\\ %

Old®

WILEAS
I T LLNY

OldD

vir

Ldvi

Oid9

_ .
f SSTHATY B VLV \

o0t

JOULNGD TLA % Ov3Y

-~

HOESIo0/d
FHE0OW

L "Old

US 9,223,969 B2

Sheet 2 of 30

Dec. 29, 2015

U.S. Patent

1Hvd 30VAUIINI

AHONSN
HEVI

THOMIIN c_aw S | | awn
il L 14t
WS
Sng Wood
&) ﬂw &

- 1
gzt

SN JUNDIINGS

I

I

I

X9 sng

AH
TIvAATHIA

A

STEIA-LINY

WIH44NE

HIATIOUINOD
s

LTTIOWINGD

HATIORINOD
WYHOS

b

I
i

I

~.\ "

7
0L W W _ _ _
RV s/
MITHOHLINOD
m WG m f1d2 (537 k
P N, 7
=l ﬁ €L
N/
m S8 RUNDIENOD
\‘-
1oL

¢ Ol

U.S. Patent Dec. 29, 2015 Sheet 3 of 30 US 9,223,969 B2

FIG. 3
300
FILE FILE
ouT IN PACKET IN
a0 |
./
Z p

MANAGER

‘]
............................. " f éﬁATCHgNGr.“
| ENGINE

. DB

| COMMUNICATION|

UNIT 300a

PACKET OUT

U.S. Patent Dec. 29, 2015 Sheet 4 of 30 US 9,223,969 B2

Fig. 4
FILE PACKET
H t
; |
;%80 340 !
N f‘j /—j i A
: AV | FW i i
a0 VIRUS LUl generare | T o SNONE T enerate | || RULEPATTERN
PATTERN DB HASH VALUE i | HASH VALUE e
HASH VALUE
380] SECOND HASH fo—— - s g wrm ING .l FIRSTHASH
MATCHERTABLE FULL UNIT 351 RATCHER TABLE
PATTERN T !
MATCHING LIGHT 370
7 PATTERN
385~ SECONDSUB |l —gerbwmr—), || MATCHING [T EXACT — fn FIRST SUB
MATCHER TABLE PATTERN UNIT PATTERN MATCHER TABLE
| MATCHING — MRS j
| ’ e, 375

US 9,223,969 B2

Sheet 5 of 30

Dec. 29, 2015

U.S. Patent

o | zooow g 5 | 8
g | ooozxo a 5 | v
SSALOOY
AMOWINW HSYH | HEVH
SREL BOVEITYY OLOdd| a |ouN
WY
o | 90000 o NE AR
4 | L000%0 } L0 | to%e | X
wwwm%%% @1Ag | e
LXIN ppa g | HROBE mdst wei o) aon
emdmw.% YL 81
5487
a1 HIHOIYW ans 181

)]
o a I
ans
1804 ; v
>
1
o 7
ans
L X |
026~ IoNTSEY
FONIS U] TN

HEYH
1x0d

HEYH
OO LGk

HSYH

FgvL H3IHOIVYIN HEYH 1SL

130vd

120d

OOGLO¥

cit

G Ol

U.S. Patent Dec. 29, 2015 Sheet 6 of 30

FIG. 6

VIRUS
PATTERNS

HASH

FUNCTION
f(H)=ax+by+cz

PATTERN HASH TABLE

HASH VALUE
(HP) PATTERN
X abcdefg
Y hiikimnopg
X aboxyz

US 9,223,969 B2

U.S. Patent Dec. 29, 2015 Sheet 7 of 30 US 9,223,969 B2
FIG. 7
380
/,..__/
2MD HASH MATCHER TABLE 2ND HASH MATCHER TABLE
INDEX({HP) | VALLIE(/D) INDEX((HP) VALUE(1/0)
Q Q it
7 7
X XA
B P Q
Y NS A)0 INCONSISTENCY
1 CONSISTENCY
385
/,.__/’
ZND SUB MATCHER TABLE
WALWARE
MATCHING %Zﬁ?;gg MIDDLE TAIL PATTERN
INDEX DATA
PATTERN | offset1] value | offset? ! value ADDRESS
X z 4 g 7 3 0x1000
¥ o 5 | 10 q 0x2000
2 O 3 ol G Z Ox8000

U.S. Patent Dec. 29, 2015 Sheet 8 of 30 US 9,223,969 B2

FIG. 8

800

FILE FILE
ouT IN PACKET QUT

L3

8 ~.-300a

TR

i

]

i] ¥
L L _MATCHING _
\% UNIT

RULE |
PATTERN |
DB

VIRUS |
PATTERN |
DB

 Ew

COMMUNICATION
UNIT

830

850

~ 870

PACKET IN

U.S. Patent Dec. 29, 2015 Sheet 9 of 30 US 9,223,969 B2

FiG. 9

900

FILE

FiLg IN
i’ PACKET IN

¥ —

8 2140
FW MANAGER [

| AV MANAGER |

8930

AV ENGINE
SECOND
MATCHING
UNIT

FW ENGINE.

FIRST §

MA‘?CHEN@i
]

RULE |
PATTERN |
DB |

PATTERN |
g Ds i

({
o & |

U.S. Patent

Dec. 29, 2015 Sheet 10 of 30 US 9,223,969 B2
FIG. 10
FIRST TARGET DATA (PACKET)
920 E 930
~ | ~
RUE | | =2
PATTERN - |
............ DB
931a 931p 931
5 £ Vi il
Y L.
FIST HASH ng;
VALUE PATTERN | | EXACT
MATCHING F—— PATTERN
UNIT MATCHING | | MATCHING
UNIT | & '
| | |
FIRST HASH FIRST SUB §
MATCHER MATCHER F———= -
TABLE TABLE
g70 975

U.S. Patent Dec. 29, 2015 Sheet 11 of 30 US 9,223,969 B2

FIG. 11
SECOND TARGET DATA (FILE)
| 960
950 | -
N, :,
VIRUS |
||\ GENERATE
nggm || HASHVALUE

961

s

261a 9681b
£ s

—
SECOND SECOND
HASH LIGHT | § EXACT FOLL
SR L e |) [
o TOHNGI | |_waTciing MATCHING

i

| |
i

]
SECOND HASH SECOND 8UB
MATCHERTABLE MATCHER TABLE

3 :

8950 885

;
i
i
!
!
i
i
i
i
o

U.S. Patent Dec. 29, 2015 Sheet 12 of 30 US 9,223,969 B2
FIG. 12
1200
FILE FILE
out IN PACKET OUT
r-S &
1240 *
™AV MANAGER |
1260 — :
AV ENGINE
VIRUS | | SECOND,
PATTERN | | |MATCHING MATGHING
{}B i UNiT UNET

1250 \ 1231

1261

COMMUNICATIONE
UNIT

|

PACKET IN

U.S. Patent Dec. 29, 2015 Sheet 13 of 30 US 9,223,969 B2

STORE RULE DB AND - $1302
PATTERN DB
|
GENERATE AND STORE
FIRGT HMT, FIRST SMT,
SECOND HMT, aNp |~ 5199
SECOND SMT
! 3
VIRLIS-SCANNING
FILTERING SUBJECT - 51306 SUBJECT 81328
} i
GENERATE HASH VALUE GENERATE HASH
OF FIRST TARGET DATA [~ 51308 VALLIE OF SUB DATA [51328
i \
HASBH VALUE HASH VALUE
MATCHING 51310 MATCHING - $1330

o §1312
1S MATOHING
S, UCCESSFU ™

e §1332
_ 1S MATCHING ™—_

N

LPM - 51314 LPM b~ $ 1334

EPM - 81338

81320 %324

18 MATCHING ™
S UCCES SFUL SN ALLOW

BLOCK e S 1322

US 9,223,969 B2

Sheet 14 of 30

Dec. 29, 2015

U.S. Patent

H344N8
D NYOS

HIHOLYIN
NY3LLvd
LHOIT

L
we |

H344N4

O HEYH

S83UOaY

&

“ RI0T

174

P

HALSIOFH WNALSAS

| 138440
e
21z H

HIHO LYW
HEYH

JOLYHINID |

| u3adng

| w3408

ng ﬂ

Py
£02

FIVAEINI
AHOWINW

T zovauzin
| W31SAS

s

07

i Ol

US 9,223,969 B2

Sheet 15 of 30

Dec. 29, 2015

U.S. Patent

&

v
N3 LLYd 815

|

MAILLVd 8NS5
DWISN NY3LLvd
FTOHAM DNIMI3HD

DMIHOLYH

Nudiivg *

ANE3Jy

. - .
[vadane H3NE | §wmdang SNICVOT
mﬁaz«um 5127 O HSVH ¥iVO
_
517
S | SRIDONC
DNNDIANCD
LHON S E IR T
: _ \m / _ /.«wm
; : 7 .
‘ {
J I gz NIOHEIN M
111~ B SEIANY
£

HIHDIYMEOS |

[3evl
1 MIHOLYW HEVH

~

143

£

=g
¥

4l Old

U.S. Patent Dec. 29, 2015 Sheet 16 of 30 US 9,223,969 B2
FIi. 18
INITIALIZE ANTIVIRUS
I
LOAD PATTERN DB L~ 51603
iy
LOAD TARGET DATA INTO
BUEFER F-sfsms
%
READ TARGET DATA
FROM BUFFER BY 1807
PREDETERMINE SIZE
I
PERFORM MATCHING
THROUGH HASH MATCHER 51609
TARGET DATA COUNT=SIZE
OF READ TARGET DATA e S16 11
// —@.\:\smza ; 81615
< TARGET DATA COUNTE™, J CHANGE BUFFER
vy, BUFFER SIZE?
- 851617
Y T \Q/

IS HASH Q BUFFER ™
FULL?

END

U.S. Patent

Dec. 29, 2015 Sheet 17 of 30

FIG. 17

LUE OF TARGET
e, DATA EXISTIN
ony, HASH DB?

VA

P e S1703

1S PATTERN
" INDICATION IN HASH
gy, VALUE OF TARGET
DATA?

LY

81705

US 9,223,969 B2

81713
7

o 1S HASH Q BUFFER
FULL?

SET HASH Q BUFFER
TO BE FULL

N

UPDATE HASH Q BUFFER |

DOES READ EROM
HASH Q BUFEER?

.

LPM IN LIGHT PATTERN

MATCHER ~-S1711

U.S. Patent Dec. 29, 2015 Sheet 18 of 30 US 9,223,969 B2

FIG. 18

KwizfﬁT }

IREAD MEMORY DETERMINED|
| BY OFFSET OF HASH VALUE |~--$1801
| FOR READ TARGET DATA |

7 - 51803
1S MIDDLE ™
N "VALUE OF TARGET

g DATA IDENTICAL TO o

' - 51805
N T8 TAIL VALUE
OF TARGET DATA
w IDENTICALTO
i ""*:-::;.;::_:::::::::::. ATTE _:_:;:;:::*:::::::I:::.:.. g

~ S1807 51811

IS SCAN Q BUFFER ™, _|SET SCAN Q BUFFER|
FULL? TQ BE FULL

US 9,223,969 B2

Sheet 19 of 30

Dec. 29, 2015

U.S. Patent

FHECL

ONIGHODOVY Nd3Livd

NOLLY™3HO

LINTvd

ga
Nudlivd
EL

aa
SRR e L

Y e

iz

SNIHOLYI W3NG | u3aEn
PQ% - Nv Z«QW gL U HEYH
HoYH [
1S3 S e
\,‘ AHOWIN
¢ Tl
, / LOE
BLL] AH TV AN, /
7
—— & _—
IFlavi I1EvVL
o MIHOLYH 8BNS HIHOLVI HEVH
e =
¥ £5

61 "Oid

U.S. Patent Dec. 29, 2015 Sheet 20 of 30 US 9,223,969 B2

FIG. 20

)

i

INPUTTING PACKET DATA |~_

CONVERTING PACKET
HEADER INTO PATTERN
FORMAT

52003

PACKET CLASSIFYING

PROCESS [~ 52005

~ DOES PACKET ™
L DATAMATCHWITH 3
. RULE?

ALLOWORBLOCK]
$2009~ACCORDING TO MATCHING| PASS
RULE *

- 32011

U.S. Patent Dec. 29, 2015 Sheet 21 of 30 US 9,223,969 B2

FIG. 21

S2101

o
/32103 / /‘1%@?5

el

T8 FLAG INDICATING ™

% WHETHERDATAIS
"y CLASSIFIED OR o

1P MATCHING PROCESS

82111
$2108
o

.

IS FLAG INDICATING
e WHETHER DATAIS
e, CLASSIFIED OR
Mo NOT 7o

PROTOCOL MATCHING
PROCESS

82115 g
éN . / \\

o

PORT MATCHING 13 FLAG INDICATING ™ v
PROCESS WHETHER DATA IS
CLASRIFEDROR

i
FATTERN MATCHING -~ 82121

fsréa}

U.S. Patent Dec. 29, 2015 Sheet 22 of 30 US 9,223,969 B2
FiG, 22
{ sTART)
i
HASH MATCHING
PROCESS 82201
_ 82203
_ epan M
& NMATCHED? 3
SUR MATCHING PROCESS - 82207
/l\\ 2208
82205
A .jJ
; GHANGING FLAG INDICATING
IDENTIEYING WHETHER DATA IS CLASSIFIED
ispro AND isport QRNOTTO Y
82217 A s2213
EHANGING N oo
PROTOCOL FLAG fen <
oL - oy VALUE 17 p0®*
[+
2218 P §2215
CHARGING PORT N IS isport
FLAG TO 'NGT ALL VALUE 17
¥

(Cenn)

U.S. Patent Dec. 29, 2015 Sheet 23 of 30 US 9,223,969 B2

FiG. 23

HASH MATCHING
PROCESS

52305
o

| CHANGING FLAG INDICATING |
WHETHER DATA 15 CLASSIFIED |

END

U.S. Patent Dec. 29, 2015 Sheet 24 of 30 US 9,223,969 B2

FIG 24

HASH MATCHING
PROCESS

-§2401

52409
L

CHANGING FLAG INDICATING

WHETHER DATA [S CLASSIFIED

U.S. Patent Dec. 29, 2015 Sheet 25 of 30 US 9,223,969 B2

FIG. 25

AV scanning time

U.S. Patent Dec. 29, 2015 Sheet 26 of 30 US 9,223,969 B2

FIG 26

Memory usage and AY scanning time according to the number of files

U.S. Patent Dec. 29, 2015 Sheet 27 of 30 US 9,223,969 B2

FIG. 27

Power consumption duting scanning operation

Product T Prodiict2 Present Disclosure

% FPover Cofsumiption

U.S. Patent Dec. 29, 2015 Sheet 28 of 30 US 9,223,969 B2

FIG. 28

Result'of comparing present disclosure:with products on the market

e
=
boes

v e

5 5

R

T

Sk

A e {58
R sy

S

Present disclosure

Vender - Number of files per one product

U.S. Patent Dec. 29, 2015 Sheet 29 of 30 US 9,223,969 B2

FIG. 20

U.S. Patent Dec. 29, 2015 Sheet 30 of 30 US 9,223,969 B2

FIG. 30

US 9,223,969 B2

1
ANTI-MALWARE SYSTEM AND OPERATING
METHOD THEREOF

CROSS-REFERENCE TO RELATED PATENT
APPLICATIONS

This application claims priorities from Korean Patent
Application No. 10-2010-0053371, filed on Jun. 7, 2010,
Korean Patent Application No. 10-2010-0057824, filed on
Jun. 18, 2010, and Korean Patent Application No. 10-2011-
0051706, filed on May 30, 2011, in the Korean Intellectual
Property Office, the disclosures of which are incorporated
herein by reference in their entireties.

BACKGROUND

1. Field

Apparatuses and methods consistent with exemplary
embodiments relate to anti-malware systems, and operating
methods thereof, and more particularly, to anti-malware sys-
tems for swiftly filtering or scanning malware, and operating
methods thereof.

2. Description of the Related Art

Malware is any software designed to damage a computer
system, such as computer viruses, Trojan horses, malicious
codes, and the like. As hardware of mobile devices has
become more luxurious, and application programs embodied
in portable terminals have become varied and more compli-
cated, malware that has attacked typical computers is likely to
seriously damage mobile devices. In particular, as wireless
portable Internet services such as WiBro have been spread,
mobile malware that attacks weak points of application pro-
grams and services, such as Bluetooth and multimedia mes-
saging system (MMS), as well as malware that attacks weak
points of application programs for typical computers has been
introduced. These various malwares may seriously damage
mobile devices, and for example, may cause operational
errors of mobile devices, may delete data, and may invade
user’s privacy.

Typical anti-malware solutions are based on software, and
have been used in mobile devices. As mobile devices need to
include a control processing unit (CPU), a battery, and the
like, there is a limit in using resources. Thus, when a mobile
device uses the typical anti-malware solutions based on soft-
ware, a user may experience some inconvenience due to
reduced performance when performing another operation. In
this case, when network packets are monitored, it is difficult
to monitor all network packets due to the reduced perfor-
mance.

SUMMARY

One or more aspects of exemplary embodiments provide
anti-malware systems for swiftly filtering or scanning mal-
ware, and operating methods thereof.

One or more aspects of exemplary embodiments provide
anti-malware systems for swiftly filtering and scanning mal-
ware in a mobile device having a limited resource, and oper-
ating methods thereof.

According to an aspect of an exemplary embodiment, there
is provided an operating method of an anti-malware system,
the operating method including: performing a filtering opera-
tion on data (hereinafter, referred to as “first target data’) to be
filtered by matching the first target data with rule patterns; and
performing a virus scanning operation on data (hereinafter,
referred to as ‘second target data’) to be virus-scanned by
matching the second target data with virus patterns, wherein

10

15

20

25

30

35

40

45

50

55

60

65

2

the filtering operation and the scanning operation are per-
formed on a system-on-chip (SoC).

According to an aspect of another exemplary embodiment,
there is provided an anti-malware system for receiving target
data, and at least one of scanning and filtering anti-malware,
the anti-malware system including: a storage unit for storing
a malware pattern; a first hash value matching unit for match-
ing a hash value of at least a portion of the target data with a
hash value of the malware pattern; and a first light pattern
matching unit for matching the malware pattern with the
portion of the target data, when the matching of the hash value
is successful, wherein an light pattern matching operation is
successful, the malware pattern is matched with whole of the
target data.

BRIEF DESCRIPTION OF THE DRAWINGS

The patent or application file contains at least one drawing
executed in color. Copies of this patent or patent application
publication with color drawing(s) will be provided by the
Office upon request and payment of the necessary fee.

The above and other features and advantages will become
more apparent by describing in detail exemplary embodi-
ments with reference to the attached drawings in which:

FIG. 1 is a block diagram of a mobile device including an
anti-malware system, according to an exemplary embodi-
ment;

FIG. 2 is a block diagram of the anti-malware system of
FIG. 1, according to an exemplary embodiment;

FIG. 3 is a functional block diagram for explaining an
operation of a first anti-malware system, according to an
exemplary embodiment;

FIG. 4 is a block diagram for explaining a firewall (FW)
engine, an anti-virus (AV) engine, and a matching unit of FIG.
3, according to an exemplary embodiment;

FIG. 5 shows a first hash matcher table and a first sub
matcher table of FIG. 4, according to an exemplary embodi-
ment;

FIG. 6 shows an example of a pattern hash value table used
in an AV engine, according to an exemplary embodiment;

FIG. 7 shows a second hash matcher table and a second sub
matcher table, which are used by an AV engine of FIG. 4,
according to an exemplary embodiment;

FIG. 8 is a block diagram for explaining an operation of a
second anti-malware system, according to another exemplary
embodiment;

FIG. 9 is a block diagram for explaining an operation of a
third anti-malware system, according to another exemplary
embodiment;

FIG. 10 is a block diagram for explaining a FW engine,
according to an exemplary embodiment;

FIG. 11 is a block diagram for explaining an AV engine,
according to an exemplary embodiment;

FIG. 12 is a block diagram for explaining an operation of a
fourth anti-malware system according to another exemplary
embodiment;

FIG. 13 is a flowchart of an operating method of an anti-
malware system, according to an exemplary embodiment;

FIG. 14 is a block diagram of a hardware configuration of
the anti-virus hardware (H/W) of FIG. 2, according to an
exemplary embodiment;

FIG. 15 is a block diagram for explaining a virus scanning
operation in an anti-virus H/W, according to an exemplary
embodiment;

FIG. 16 is a flowchart of an operating method of the anti-
virus H/W in an anti-malware system, according to an exem-
plary embodiment;

US 9,223,969 B2

3

FIG. 17 is a flowchart of a matching operation of a hash
matcher of Operation S1609 of FIG. 16, according to an
exemplary embodiment;

FIG. 18 is a flowchart for explaining a matching operation
of'alight pattern matcher of Operation S1711, according to an
exemplary embodiment;

FIG. 19 is a block diagram for explaining a packet filtering
operation performed in a firewall H/W, according to an exem-
plary embodiment;

FIG. 20 is a flowchart of a packet filtering method of a FW
engine, according to an exemplary embodiment;

FIG. 21 is a flowchart of a packet dividing process of
Operation S2003, according to an exemplary embodiment;

FIG. 22 is a flowchart of an IP matching process of Opera-
tion 82103, according to an exemplary embodiment;

FIG. 23 is a flowchart of a protocol matching process of
Operation S2109, according to an exemplary embodiment;
and

FIG. 24 is a flowchart of a port matching process of Opera-
tion 82115, according to an exemplary embodiment.

FIGS. 25 to 30 are views to explain effects of the SOC
according to exemplary embodiments.

DETAILED DESCRIPTION OF EXEMPLARY
EMBODIMENTS

Exemplary embodiments will now be described more fully
with reference to the accompanying drawings to clarify
aspects, features and advantages. Exemplary embodiments
may, however, be embodied in many different forms and
should not be construed as limited to the exemplary embodi-
ments set forth herein. Rather, these exemplary embodiments
are provided so that this disclosure will be thorough and
complete, and will fully convey the scope of the inventive
concept to those of ordinary skill in the art. It will be under-
stood that when an element, layer or region is referred to as
being “on” another element, layer or region, the element,
layer or region can be directly on another element, layer or
region or intervening elements, layers or regions.

The terms used herein are for the purpose of describing
particular embodiments only and are not intended to be lim-
iting of the invention. As used herein, the singular forms “a”,
“an” and “the” are intended to include the plural forms as
well, unless the context clearly indicates otherwise. It will be
further understood that the terms “comprises” and/or “com-
prising,” when used in this specification, specify the presence
of stated features, integers, steps, operations, layers, regions,
elements, components, and/or groups thereof, but do not pre-
clude the presence or addition of one or more other features,
integers, steps, operations, layers, regions, elements, compo-
nents, and/or groups thereof. As used herein, the term “and/
or” includes any and all combinations of one or more of the
associated listed items. Furthermore, expressions such as “at
least one of,” when preceding a list of elements, modify the
entire list of elements and do not modify the individual ele-
ments of the list.

As the inventive concept allows for various changes and
numerous embodiments, particular exemplary embodiments
will be illustrated in the drawings and described in detail in
the written description. However, this is not intended to limit
the present inventive concept to particular modes of practice,
and it is to be appreciated that all changes, equivalents, and
substitutes that do not depart from the spirit and technical
scope of the present inventive concept are encompassed in the
present inventive concept. In the description of the exemplary
embodiment, certain detailed explanations of related art are

10

15

20

25

30

35

40

45

50

55

60

65

4

omitted when it is deemed that they may unnecessarily
obscure the essence of the inventive concept.

According to one or more exemplary embodiments, an
anti-malware system functioning as anti-malware may be
embodied in the form of a single chip based on a system on
chip (SoC), or in the form of a single IP chip in a typical
application processor.

Various mobile devices including cellular phones, smart
phones, and tablet PCs have no standard for an interface
between components, and have various models according to a
function. Thus, exemplary embodiments described herein are
justexamples, and may be changed in various ways according
to an interface situation. Hereinafter, exemplary embodi-
ments will be described in terms of a mobile device. However,
acomputing device such as a general personal computer (PC)
may also be used.

FIG. 1 is a block diagram of a mobile device including an
anti-malware system 100, according to an exemplary
embodiment.

Referring to FIG. 1, the anti-malware system 100 may be
embodied in the form of a single chip, and may be installed in
the mobile device. Data and address signals, read and write
signals, and control signals may be transmitted between the
anti-malware system 100 and a mobile processor 10.

The anti-malware system 100 communicates with a debug
port 20 through a general purpose input/output pin (GPIO)
and a universal asynchronous receiver transmitter (UART)
for debugging.

The anti-malware system 100 may include a serial periph-
eral interface (SPI) for communication with peripheral
devices including a network interface card (NIC) 30.

The anti-malware system 100 may include a GPIO for
interrupt handling such as a wireless land (WiFi) 40.

FIG. 2 is a block diagram of the anti-malware system 100
of FIG. 1, according to an exemplary embodiment.

Referring to FIG. 2, the anti-malware system 100 includes
configure buses 101 and 125, a central processing unit (CPU)
103, a direct memory access (DMA) controller 105, local
buses 107 and 131, a synchronous dynamic random access
memory (SDRAM) controller 109, a flash controller 111, a
static random access memory (SRAM) controller 113, a
buffer 115, an anti-virus hardware (H/W) 117, a firewall H/W
119, a bus matrix 121, and a boot 123. The anti-malware
system 100 may further include a SDRAM 127, a flash
memory 129, and a SRAM 130. Although the exemplary
embodiments have descriptions for viruses, these embodi-
ments are merely exemplary in that the same exemplary
embodiments may be applied for other malware, e.g., used to
scan for other malware, and are not limited to viruses.

The CPU 103 controls overall operations of the anti-mal-
ware system 100, and processes requested operations.
According to an exemplary embodiment, the CPU 103 may
be a reconfigurable CPU, but this is merely an example. Thus,
a CPU that is not reconfigurable may also be used.

The DMA controller 105 controls a DMA.

In FIG. 2, a memory controller may include the SDRAM
controller 109, the flash controller 111, and the SRAM con-
troller 113. The SDRAM controller 109 controls an input and
output of the SDRAM 127. The flash controller 111 controls
an input and output of the flash memory 129. The SRAM
controller 113 controls an input and output of the SRAM 130.

The buffer 115 temporarily stores data through an interface
with an external component.

The anti-virus H/W 117 may perform a matching operation
between a virus pattern and target data to be virus-scanned.
For example, a virus pattern database (DB) may be stored in

US 9,223,969 B2

5

the SRAM 130, and the anti-virus H/W 117 may perform the
matching operation between the virus pattern DB and the
target data.

The firewall H/'W 119 may be embodied as hardware, and
may match target data to be filtered with a rule pattern DB.
For example, the rule pattern DB may be stored in the SRAM
130, and the firewall H/W 119 may match the rule pattern DB
with the target data. Software for driving the anti-virus H/'W
117 or software for driving the firewall H/W 119 is loaded
into any of the SDRAM 127, the flash memory 129, and the
SRAM 130, and controls the anti-virus H/W 117 and the
firewall H/'W 119.

A bus for transmitting data between blocks in the anti-
malware system 100 may be divided into the local buses 107
and 131 for swift transmission of data, and the configure
buses 101 and 125 for configuration. According to the present
exemplary embodiment, the local bus 107, and the configure
buses 101 and 125 may meet an advanced high performance
bus (AHB) standard.

The bus matrix 121 converts a control signal and a data
signal of the AHB standard into a control signal and a data
signal of an advanced peripheral bus (APB) standard or con-
verts a control signal and a data signal of the APB standard
into a control signal and a data signal of the AHB standard,
and transmits the converted signals.

The boot 123 initializes the anti-malware system 100 in a
SoC.

Updating the anti-malware software (SW) to a higher ver-
sion may occur when there is a significant fix of' a bug or an
error, or when a security loophole is discovered in the anti-
malware SW.

Referring to FIG. 1, the updated binary may be received
through the Network Interface Part, the SPI or the GPIO.

The following explains the operation of updating the anti-
malware SW. The received binary update is stored at the
mobile processor 10. At the application level, the binary
update is sent to the anti-malware SoC (e.g., Anti-Malware
System 100 of FIG. 1) through the anti-malware SoC API.

The binary update sent to the anti-malware SoC is saved
through two methods.

In one method, the binary update is stored at the flash
memory after having passed through the SRAM (FIG. 1), and
then stored in the boot area 123 (FIG. 2).

In another method, the binary update received through the
SRAM is stored in the boot area 123.

To utilize the binary update, as the bootloader operates, the
updated Anti-Malware SW is loaded to the DRAM, and
through the CPU, anti-malware SW is run.

Hereinafter, anti-malware systems according to various
exemplary embodiments will be described with reference to
FIGS. 3 through 11. FIGS. 3 through 11 are diagrams for
explaining first through fourth anti-malware systems 300,
800, 900, and 1200, according to other exemplary embodi-
ments. The first through fourth anti-malware systems 300,
800, 900, and 1200 are each a modified exemplary embodi-
ment of the anti-malware system 100 described with refer-
ence to FIGS. 1 and 2.

The first through fourth anti-malware systems 300, 800,
900, and 1200 may be embodied in the form of SoC, or may
be installed in a telecommunicable device itself, such as PCs
and mobile devices. Thus, devices including the first through
fourth anti-malware systems 300, 800, 900, and 1200 may
each include a driver (not shown) and an application unit (not
shown) to use the first through fourth anti-malware systems
300, 800, 900, and 1200. That is, in order to operate the first
through fourth anti-malware systems 300, 800,900, and 1200
in the devices, the driver may be installed on each of the first

10

15

20

25

30

35

40

45

50

55

60

65

6

through fourth anti-malware systems 300, 800, 900, and
1200, and the application unit may be installed on the driver,
according to a hierarchical structure in terms of software.

FIG. 3 is a functional block diagram for explaining an
operation of the first anti-malware system 300, according to
an exemplary embodiment.

Referring to FIG. 3, the first anti-malware system 300 may
include a manager 310, a rule pattern DB 320, a virus pattern
DB 330, a firewall (FW) engine 340, a matching unit 350, and
an anti-virus (AV) engine 360.

The manager 310 is in charge of setting operations related
to a rule, generation/deletion/adding/change of the rule pat-
tern DB 320 and update (generation/deletion/adding/change)
of the virus pattern DB 330, and processes a user command.
The user command may be, for example, a command related
to update of a firewall engine or an anti-virus engine.

An operation of generating the rule pattern DB 320, which
is performed by the manager 310, will now be described. The
manager 310 may include a rule list and a command list,
which are data structures, and may include a FW commander
and a rule manager, for processing these data structures.

When a user performs firewall rule setting through a user
interface (UI) provided by FW application, the FW com-
mander adds a command corresponding to the user’s setting
to the command list of the manager 310, and wakes up the
manager 310. If the command added to the command list is a
rule adding command, the FW commander may generate rule
patterns based on information contained in a data field of the
rule adding command, and may add the rule patterns to the
rule list. In addition, when a rule applying command is added
to the command list, the FW commander may call a rule
manager, and may generate or update the rule pattern DB 320
based on the rule patterns stored in the rule list.

The rule pattern DB 320 is an aggregate of rule patterns for
determining whether to allow a packet. The rule pattern DB
320 may be generated by receiving a list about a rule from a
user application, which is performed by he manager 310. In
addition, the manager 310 may load the rule pattern DB 320
into a predetermined memory (or a buffer) so that the FW
engine 340 may use the rule pattern DB 320.

Alternatively, a user application itself transmits the rule
pattern DB 320 to the manager 310, and the manager 310 may
receive the rule pattern DB 320 and may load the rule pattern
DB 320 into a predetermined memory (or a buffer) so that the
FW engine 340 may use the rule pattern DB 320.

The rule pattern DB 320 may be provided by converting
rule patterns set by a user in a predetermined form. The rule
patterns may contain information about whether to allow or
block the target data. Thus, the rule pattern DB 320 or the rule
patterns are used for the FW engine 340 to determine whether
to allow or block the target data transmitted from an external
source. The rule pattern DB 320 may be used for the FW
engine 340 to generate respective hash values of the rule
patterns, and may be used to perform hash-value matching,
light pattern matching (LPM), and exact pattern matching
(EPM).

The virus pattern DB 330 is an aggregate of virus patterns,
and may be used for the AV engine 360 to perform virus
scanning. The manager 310 may receive a virus pattern DB
from an AV application (not shown), and may store the virus
pattern DB in a predetermined storage unit. The manager 310
may update the stored virus pattern DB.

The virus patterns may be used for the AV engine 360 to
perform a matching operation with the target data in order to
detect whether the target data is virus-infected. The rule pat-
tern DB 320 and the virus pattern DB 330 may be stored in a

US 9,223,969 B2

7

memory (e.g., the flash memory 129 of FIG. 2) included in the
SoC, or a separate memory (not shown).

In detail, the virus pattern DB 330 may be used for the AV
engine 360 to generate respective hash values for the virus
patterns, or may be used for the AV engine 360 to perform
LPM, EPM and FPM by using the target data and the virus
patterns. The virus pattern DB 330 may be a collection of
pattern data of a grammatically defined simple pattern, a
collection of pattern data of a grammatically complex pattern,
or a mixture of the pattern data of the grammatically simple
pattern and the pattern data of the grammatically complex
pattern. The grammatically defined simple pattern or the
grammatically complex pattern may be as defined in Korean
Patent Application No. 10-2010-0049566 (filed on May 27,
2010) and Korean Patent Application No. 10-2010-0052981
(filed on Jun. 4, 2010). These documents are hereby incorpo-
rated by reference to the same extent unless otherwise indi-
cated herein or otherwise clearly contradicted by context.

According to the present exemplary embodiment, the man-
ager 310 may analyze a command or data transmitted from
the user application, and may perform an operation corre-
sponding to the command or data.

For example, when the manager 310 receives a command
related to a scanning operation, the manager 310 may operate
the AV engine 360. When the manager 310 receives a com-
mand of updating the virus pattern DB 330, the manager 310
may update the virus pattern DB 330. In addition, the man-
ager 310 may receive a file to be scanned from the user
application, may order the AV engine 360 to perform the
scanning operation, and may transmit the scanning result of
the AV engine 360 to the user application.

Withregard to an operation of the FW engine 340, when the
manager 310 receives a command for reporting a filtering
result from the user application, the manager 310 may trans-
mit the filtering result of the FW engine 340 to the user
application in response to the command.

When the manager 310 receives a command or data from
an application, the manager 310 determines whether the com-
mand or data is related to scanning or filtering, and then
performs an operation corresponding to the determining
result.

For example, when the manager 310 receives a scanning
command, the manager 310 may operate the AV engine 360 to
perform a scanning operation. Target data may be output from
a web browser or an application unit (not shown) for gener-
ating and managing various files. When the target data is in
the form of a file, the manager 310 may determine that virus
scanning is to be performed on the target data, and the man-
ager 310 may transmit the target data to the AV engine 360. In
this case, the manager 310 may control the AV engine 360 to
perform the virus scanning on the target data. In addition, the
manager 310 may receive virus patterns to be updated from an
application unit (not shown), the manager 310 may update the
virus pattern DB 330 by using the input virus patterns. The
manager 310 may be divided into a FW manager for manag-
ing or controlling the FW engine 340, and an AV manager for
managing or controlling the AV engine 360.

Hereinafter, the target data to be filtered will be referred to
as “first target data’, and the target data to be virus-scanned
will be referred to as ‘second target data’.

The matching unit 350 may selectively perform a matching
operation between the rule patterns and the first target data, or
may perform a matching operation between the virus patterns
and the second target data. Sometimes, the matching unit 350
may operate as a portion of the FW engine 340, and may

10

15

20

25

30

35

40

45

50

55

60

65

8

operate as a portion of the AV engine 360 at another time. An
operational order may be appropriately determined by a pre-
determined scheduler.

When the first target data is received, the FW engine 340
determines whether to allow or block the first target data
based on the rule pattern DB 320. For example, the FW engine
340 determines whether data of the rule pattern DB 320 and
the first target data are identical to each other. Then, when it is
determined that the rule pattern DB 320 and the first target
data are identical to each other, the FW engine 340 blocks or
allows the first target data according to a predetermined rule.

When the second target data is received, the AV engine 360
may perform a scanning operation on the second target data
by using the virus pattern DB 330. According to an exemplary
embodiment, the manager 310 may receive the second target
data to be scanned, and the AV engine 360 may perform the
scanning operation on the second target data received by the
manager 310.

FIG. 4 is a block diagram for explaining the FW engine
340, the AV engine 360, and the matching unit 350 of FIG. 3,
according to an exemplary embodiment.

Referring to FIG. 4, the FW engine 340 and the AV engine
360 share the matching unit 350 with each other. In this case,
the FW engine 340, the AV engine 360, and the matching unit
350 may be embodied in the form of SoC. The FW engine 340
may perform a filtering operation on target data such as a
packet by using the rule pattern DB 320, a first hash matcher
table 370, and a first sub matcher table 375. The AV engine
360 may perform a scanning operation on target data such as
a file by using the virus pattern DB 330, a second hash
matcher table 380, and a second sub matcher table 385.

When the FW engine 340 performs the filtering operation,
the matching unit 350 may operate as a portion of the FW
engine 340. When the AW engine 360 performs the scanning
operation, the matching unit 350 may operate as a portion of
the AV engine 360. The matching unit 350 may be configured
as hardware. According to the present exemplary embodi-
ment, the matching unit 350 may include a hash value match-
ing unit 351 and a light pattern matching unit 352.

The first hash matcher table 370 and the first sub matcher
table 375 may be generated from rule patterns of the rule
pattern DB 320. The second hash matcher table 380 and the
second sub matcher table 385 may be generated from virus
patterns of the virus pattern DB 330. A method of generating
of the first hash matcher table 370, the first sub matcher table
375, the second hash matcher table 380, and the second sub
matcher table 385 will be described in detail with reference to
FIGS. 5 through 7.

The filtering operation of the FW engine 340 will now be
described.

According to the present exemplary embodiment, the fil-
tering operation by the FW engine 340 includes a packet
classifying process and a rule pattern matching operation.

The packet classitying process includes at least one of an IP
matching process, a protocol matching process, and a port
matching process. These processes are performed by the hash
value matching unit 351 and the light pattern matching unit
352. Inthe packet classifying process, an exact pattern match-
ing operation is not performed.

More specifically, in the IP matching process, the hash
value matching unit 351 matches a hash value of an IP address
included in the packet data and the first hash matcher table
370. If the matching is successful, the light pattern matching
unit 352 matches a middle value and a tail value of the IP
address included in the packet data and the first sub matcher
table 375.

US 9,223,969 B2

9

In the port matching process, the hash value matching unit
351 matches a hash value of a port included in the packet data
and the first hash matcher table 370. If the matching is suc-
cessful, the light pattern matching unit 352 matches the hash
value of the IP address and the hash value of the protocol
included in the packet data and the first sub matcher table 375.

In the protocol matching process, the hash value matching
unit 351 matches a hash value of a protocol included in the
packet data and the first hash matcher table 370. In the pro-
tocol matching process in the present exemplary embodi-
ment, the light pattern matching operation by the light pattern
matching unit 352 is not performed and only the hash value
matching operation is performed.

The above-described matching processes are performed by
the hash matching unit 351 and the light pattern matching unit
352 in sequence. The IP matching process, the port matching
process, and the protocol matching process will be described
in detail below with reference to FIGS. 21 to 24.

If the packet classifying process for the packet data is
completed, the FW engine 340 performs a rule pattern match-
ing operation. The rule pattern matching operation is not
performed for all of the packet data and is performed for only
the packet data which has been classified as data to be rule
pattern-matched. The packet classifying process will be
explained in detail below with reference to FIG. 21.

The rule pattern matching operation is performed by the
hash value matching unit 351 and the light pattern matching
unit 352. If the light pattern matching is successful, the exact
pattern matching is performed. The light pattern matching
and the exact pattern matching will now explained.

When performing the rule pattern matching operation, the
hash value matching unit 351 matches the hash value of the IP
address included in the packet data and the first hash matcher
table 370. If the hash value matching is successful, the light
pattern matching unit 352 matches the middle value and the
tail value of the IP address included in the packet data and the
second sub matcher table 375. If the light pattern matching is
successful, the FW engine 340 matches header information
(such as a source IP address, a destination IP address, a
protocol, a source port, a destination port, an input/output
direction, and the like) of the packet data and a real rule
pattern.

As described above, the hash value matching unit 351 and
the light pattern matching unit 352 may perform the packet
classifying process and the rule pattern matching operation in
sequence. The first hash matcher table 370 and the first sub
matcher table 375 may be commonly used in the packet
classifying process and the rule pattern matching operation.
However, a hash matcher table and a sub matcher table foruse
in the packet classifying process and a hash matcher table and
a sub matcher table for use in the rule pattern matching
operation may be separately provided.

According to the present exemplary embodiment, the rule
pattern DB 320 may include at least one of a source IP
address, a destination IP address, a protocol, a source port, a
destination port, a transmission control protocol (TCP) flag,
and an input/output direction of a packet. In this case, the
input/output direction of a packet indicates whether the first
target data is transmitted outwards, or is received from an
external source through a NIC.

According to an exemplary embodiment, the FW engine
340 may generate the first hash matcher table 370 and the first
sub matcher table 375 with reference to the rule pattern DB
320, as shown in FIG. 5. According to the present exemplary
embodiment, the first hash matcher table 370 and the first sub
matcher table 375 are generated by the FW engine 340, but
this is merely an example. A separate component may gener-

5

10

15

20

25

30

35

40

45

55

60

65

10
ate the first hash matcher table 370 and the first sub matcher
table 375, or alternatively, another component (e.g., the man-
ager 310) may generate the first hash matcher table 370 and
the first sub matcher table 375.

FIG. 5 shows the first hash matcher table 370 and the first
sub matcher table 375 of FIG. 4, according to an exemplary
embodiment.

Referring to FIG. 5, (a) shows an example of header infor-
mation, (b) shows an example of a hash matcher table, and (c)
shows an example of a sub-matcher table.

In the present exemplary embodiment, the firewall engine
may generate a hash matcher table using the rule pattern
stored in the rule pattern DB. More specifically, the firewall
engine obtains all hash values for IP addresses included in the
rule patterns by using a hash function and configures the hash
matcher table of (b) of FIG. 5 based on the hash values.

Referring to (b) of FIG. 5, the hash matcher table includes
anindex item and a presence/absence item indicating whether
an index exists or not. The index is determined by all hash
values that can be obtained by the predetermined hash func-
tion, and, if an index value is the same as the hash value of the
IP address of the rule pattern, the index is set to “1” in the
presence/absence item.

The hash matcher table further includes a hash value for the
protocol and a hash value for the port.

The firewall engine may generate the sub matcher table.
The firewall engine newly generates a sub matcher table and
a hash matcher table every time that the rule pattern DB is
updated. The firewall engine may generate the sub matcher
table from the rule pattern DB and/or the hash matcher table.

The sub matcher table includes an index item, a mid item,
atail item, an ispro item, an isport item, a real pattern memory
address item, and a next item.

The sub matcher table will be explained with reference to
(c) of FIG. 5 for convenience of understanding. According to
the first record of (¢) of FIG. 5, the index item is ‘X, the mid
item is ‘0x03’, the tail item is ‘0x21°, the ispro item is 1°, the
isport item is ‘1°, the real pattern memory address item is
‘0x0001°, and the next item is ‘R’.

The values shown in the index item of the sub matcher table
are values having a value ‘1’ in the presence/absence item of
the hash matcher table. In other words, the index ‘X’ of the
first record of the sub matcher table also exists in the hash
matcher table and has a value of ‘1’ in the presence/absence
item. On the other hand, the value ‘R’ does not exist in the
hash matcher table but exists in the sub matcher table as an
index value. This value is provided in case that rule patterns
are different but hash values of IP address are the same, in
other words, in case that a hash collision occurs. For example,
a rule pattern A and a rule pattern B have different IP
addresses, but ahash value ofthe IP address of the rule pattern
A and a hash value of the IP address of the rule pattern B are
the same (for example, a hash value of ‘X’) (i.e., hash colli-
sion). In this case, as shown in the sub matcher table of (¢) of
FIG. 5, the hash value of the IP address of the rule pattern A
is written as ‘X’ and the hash value of the IP address of the rule
pattern B is written as ‘R’, and ‘R’ is written in the next item.
If sub matching is not successful as a result of performing
sub-matching with respect to the record of the index “X’, the
sub matching for the record of the index ‘R’ is performed
again. According to an exemplary embodiment, the ‘R’ writ-
ten in the next item may be defined as a difference between a
memory address in which the record of the index ‘X’ is stored
and a memory address in which the record of the index ‘R’ is
stored.

The values written in the index item of the sub matcher
table (for example, X, A, or B) may be obtained from the hash

US 9,223,969 B2

11

matcher table or may be obtained directly from the rule pat-
tern DB without using the hash matcher table. In other words,
the hash values for the IP addresses owned by the rule patterns
of the rule pattern DB may be written as indexes in the sub
matcher table.

The index ‘X" of the first record of the sub matcher table is
a hash value for an IP address of a rule pattern stored in a
memory address (‘0x0001°) designated by the real pattern
memory address item.

The value ‘0x03” in the mid item of the sub matcher table is
a value of a middle byte of the IP address of the rule pattern
stored in the memory address (‘0x0001”) designated by the
real pattern memory address item.

The value ‘0x21’ in the tail item of the sub matcher table is
avalue of a tail byte ofthe IP address of the rule pattern stored
in the memory address (‘0x0001”) designated by the real
pattern memory address item.

The value ‘1’ in the ispro item of the sub matcher table
means that the rule pattern stored in the memory address
(‘0x0001°) designated by the real pattern memory address
item is applied to all protocols.

The value ‘1’ in the isport item of the sub matcher table
means that the rule pattern stored in the memory address
(‘0x0001°) designated by the real pattern memory address
item is applied to all ports.

The above explanation has been made for an IP matching
process and is about the area marked ‘IP sub’ in the sub
matcher table of (c) of FIG. 5. Hereinafter, the area marked
‘Port sub’ in the sub matcher table of (¢) of FIG. 5 will be
explained. Values in this area are used for a port matching
process.

Anindex ‘A’ in the sub matcher table of (¢) of FIG. 5 means
that a hash value of a port of a rule pattern stored in a memory
address (‘0x2000’) designated by the real pattern memory
address item is applied to all ports. A value ‘C’ in an IP hash
item is a hash value of an IP address included in the rule
pattern stored in the memory address (‘0x2000”) designated b
the real pattern memory address item. A value ‘D’ in a proto
hash item is a hash value of a port included in the rule pattern
stored in the memory address (‘0x2000”) designated by the
real pattern memory address. An index ‘B’is provided in case
that IP hash values collide.

The above-described hash matcher table and the sub
matcher table may be generated by the firewall engine and
may also be generated by a separately provided element other
than the firewall engine.

Hereinafter, the scanning operation of the AV engine 360
will be described.

The AV engine 360 may perform the scanning operation by
using the virus pattern DB 330 in order to determine whether
the second target data received by the manager 310 contains
virus. According to an exemplary embodiment, the scanning
operation of the AV engine 360 and the filtering operation of
the FW engine 340 may be alternately performed. Alterna-
tively, any of the AV engine 360 and the FW engine 340 may
have priority over operations. The priority may be determined
according to the default or user’s settings.

According to an exemplary embodiment, the AV engine
360 may perform a matching operation between sub data of
the second target data and virus patterns. The AV engine 360
may be embodied as at least one of hardware and software.

The AV engine 360 may generate a hash value for virus
patterns of the virus pattern DB 330. Hereinafter, a data of the
virus patterns will be referred to as the virus “pattern data”.
The AV engine 360 may generate the hash value for the virus
patterns by applying a hash function to virus pattern data. For
example, it is assumed that virus pattern data is 23 bytes long.

25

35

40

45

55

12

In this case, the AV engine 360 may calculate a hash value by
applying virus pattern data from a first byte to a third byte to
the hash function, may calculate a hash value by applying
virus pattern data from a second byte to a fourth byte to the
hash function, and likewise may calculate all hash values for
data of 23 bytes so as to generate the second hash matcher
table 380 and the second sub matcher table 385. Thus,
depending one the cases, the same hash value may be gener-
ated for different virus patterns. According to the present
exemplary embodiment, the AV engine 360 generates the
second hash matcher table 380 and the second sub matcher
table 385, but this is merely an example. Alternatively, a
separate component may generate the second hash matcher
table 380 and the second sub matcher table 385, or another
component (e.g., the manager 310) may generate the second
hash matcher table 380 and the second sub matcher table 385.

FIG. 6 shows an example of a pattern hash value table used
in the AV engine 360, according to an exemplary embodi-
ment. Referring to FIG. 6, in the pattern hash value table,
virus patterns correspond to hash values obtained from the
virus patterns, respectively. For example, a virus pattern hav-
ing a hash value ‘X’ is ‘abcdefg’.

The AV engine 360 may generate a hash value for the
second target data. For example, if it is assumed that the
second target data includes sub data S1, S2, S3, . . . that are
divided to each have a predefined size, the AV engine 360 may
respectively generate a hash values Hg from the sub data S1,
S2, 83, According to an exemplary embodiment, the AV
engine 360 generates a hash value by applying a portion of
sub data to the hash function. For example, it is assumed that
the sub data is 15 bytes long. In this case, the AV engine 360
may generate a hash value by applying values from a first byte
to a third byte of the sub data to the hash function, may
generate a hash value by applying values from a second byte
to a fourth type of the sub data to the hash function, may
generate a hash value by applying values from a third byte to
a fifth byte of the sub data to the hash function, and likewise
may generate hash values for the remaining bytes.

According to an exemplary embodiment, the second hash
matcher table 380 may be used in the hash value matching
unit351. The second sub matcher table 385 may be used in the
light pattern matching unit 352, and may be used during the
exact matching operation.

The hash value matching unit 351 matches a hash value
H, for at least a portion of the second target data with the
second hash matcher table 380. When the second target data
is divided into the sub data, the hash value matching unit 351
matches a hash value for a portion of each sub data with the
second hash matcher table 380. Hereinafter an example of the
sub data will be described.

Referring to FIG. 7, in the second hash matcher table 380,
matching indexes in which ‘1’ is selected are each any one of
hash values H, of virus patterns.

In the second hash matcher table 380, if there are matching
indexes (e.g., X and Y) in which ‘1’ is selected, and matching
indexes identical to a hash value H of the sub data, it may be
determined that the hash-value matching is successful. In
FIG. 7, when the hash value H; of the sub data is “X” or “Y’,
it may be determined that the hash-value matching is success-
ful.

When the hash-value matching is successful, the light pat-
tern matching unit 352 performs LPM by using the sub data
on which the hash-value matching is successful, and the sec-
ond hash matcher table 380. In detail, the light pattern match-
ing unit 352 may match a virus pattern corresponding to a
matching index (e.g., X) identical to the hash value H; with a
pattern of sub data.

US 9,223,969 B2

13

LPM is an operation of matching a middle value and a tail
value of a virus pattern having a hash value H,, which the
hash-value matching is successful with a middle value and a
tail value of sub data. According to an exemplary embodi-
ment, the light pattern matching unit 352 matches the middle
value and the tail value of the sub data with the second sub
matcher table 385. When LPM fails, that is, when middle
values are not identical to each other, or tail values are not
identical to each other, it means that there is no virus pattern
in the sub data. Thus, the sub data may be determined to be
normal data.

On the other hand, when LLPM is successful, the AV engine
360 may perform EPM by using a virus pattern, sub data, and
the second sub matcher table 385. EPM is an operation of
comparing all positions of a virus pattern having the hash
value H, with all positions of sub data and matching pat-
terns. In detail, the AV engine 360 identifies an address of a
virus pattern that is mapping-stored in a matching index X,
with reference to the second sub matcher table 385. The AV
engine 360 reads the virus pattern stored in the identified
address from the virus pattern DB 330. The AV engine 360
matches ‘abcdefg’ that is a whole pattern of a virus pattern
stored in a corresponding address with a whole pattern of the
second target data.

When EPM is successful, that is, when values of all posi-
tions are identical to each other, the AV engine 360 may
determine that virus exists in target data. Although EPM is
successful as a result of scanning performed on any sub data,
if the sub data is a portion of a grammatically complex virus
pattern, the AV engine 360 may perform FPM. For example,
when the sub data on which EPM is successtul is identical to
a portion of a grammatically complex virus pattern, the AV
engine 360 may perform a matching operation on the remain-
ing sub data. The AV engine 360 may determine whether the
sub data is identical to the grammatically complex virus pat-
tern by comparing a matching result of sub data and the virus
pattern.

According to an exemplary embodiment, the EPM results
of the sub data are recorded in a sub pattern matrix. The AV
engine 360 may determine whether virus exists in target data,
with reference to the sub pattern matrix. An operation of
determining whether virus exists in target data with reference
to the sub pattern matrix corresponds to an example of a full
matching operation.

As a result of FPM, when the FPM is successful, the AV
engine 360 may determine that the second target is normal
data. On the other hand, as a result of FPM, when FPM is not
successful, the AV engine 360 may determine that the second
target data is virus-infected, and may notify the manager 310
about the determination result.

According to the above-described exemplary embodiment,
the AV engine 360 receives target data to be scanned from the
manager 310, but the FW engine 340 directly receives packet
data without the manager 310, and performs filtering on the
packet data. The FW engine 340 may notify the manager 310
about the filtering result. In addition, the manager 310 may
notify a FW interface application about the filtering result.

The reasons of separating a task of the manager 310 and a
task of the FW engine 340 will now be described.

First, a situation in which the manager 310 controls the FW
engine 340 occurs less frequency than a situation in which the
FW engine 340 filters the first target data. Thus, it is efficient
to separate the task of the manager 310 and the task of the FW
engine 340.

Second, the FW engine 340 needs to swiftly determine
whether first target data is malicious data for every first target
data and to determine whether the first target data is to be

10

15

20

25

30

35

40

45

50

55

60

65

14

transmitted. When a user changes a FW rule, ifthe FW engine
340 directly changes the rule pattern DB 320, that is, if the
FW engine 340, instead of the manager 310 changes the rule
pattern DB 320, a processing operation on the first target data,
which is performed by the FW engine 340, is delayed. Thus,
in order to overcome this problem and to prioritize the tasks of
the manager 310 and the FW engine 340, the manager 310
and the FW engine 340 may be configured as separate mod-
ules.

FIG. 8 is a functional block diagram for explaining an
operation of a second anti-malware system 800, according to
another exemplary embodiment.

Referring to FIG. 8, the second anti-malware system 800
may include a manager 810, a rule pattern DB 820, a virus
pattern DB 830, a FW engine 840, a matching unit 850, an AV
engine 860, and a communication unit 870.

Operations of the manager 810, the rule pattern DB 820,
the virus pattern DB 830, the FW engine 840, the matching
unit 850 and the AV engine 860 of FIG. 8 are the same as or
similar to operations of the manager 310, the rule pattern DB
320, the virus pattern DB 330, the FW engine 340, the match-
ing unit 350, and the AV engine 360 described with reference
to FIGS. 3 and 4, and thus their detailed descriptions will be
omitted herein. In addition, the FW engine 840 and the AV
engine 860 may share the matching unit 850, and the match-
ing unit 850 may be embodied based on hardware logic.

The second anti-malware system 800 may further include
the communication unit 870. A combination of the manager
810, the rule pattern DB 820, the virus pattern DB 830, the
FW engine 840, the matching unit 850, the AV engine 860,
and the communication unit 870 may be embodied as a single
SoC.

The communication unit 870 may receive first target data
from an external device, transmit the first target data to an
external device and may include at least one of a wireless
fidelity (WiFi) module, a local area network (LAN) module,
an over the air (OTA) module, a Bluetooth module, and a 4G
module, as a communication module. The first target data
received through the communication unit 870 is input to the
FW engine 840. The FW engine 840 generates a hash value
for the received first target data, and may perform hash-value
matching, LPM and EPM, as described with reference to F1G.
3. As a result of the EPM, when it is determined that the first
target data is normal data, the FW engine 840 may transmit
the first target data to an application unit (not shown).

FIG. 9 is a functional block diagram for explaining an
operation of a third anti-malware system 900, according to
another exemplary embodiment.

Referring to FIG. 9, the third anti-malware system 900 may
include an anti-malware (AM) manager 905, a FW manager
910, a rule pattern DB 920, a FW engine 930, an AV manager
940, a virus pattern DB 950, and an AV engine 960.

Operations of the AM manager 905, the FW manager 910,
the rule pattern DB 920, the FW engine 930, the AV manager
940, the virus pattern DB 950 and the AV engine 960 of FIG.
9 are the same as or similar to operations of the manager 310,
the rule pattern DB 320, the virus pattern DB 330, the FW
engine 340, the matching unit 350, and the AV engine 360
described with reference to FIG. 3, and thus their detailed
description will be omitted herein.

However, in FIG. 9, the manager 310 of FIG. 3 is substi-
tuted with three managers (i.e., the AM manager 905, the AV
manager 940, and the FW manager 910). In FIG. 3, the
manager 310 performs all operations of the AM manager 905,
the AV manager 940, and the FW manager 910. However, in
FIG. 9, the three managers (i.c., the AM manager 905, the AV
manager 940, and the FW manager 910) perform respective

US 9,223,969 B2

15

separate operations. To configure a single manager or three
managers is merely an example, and thus another method
(e.g., a method of increasing the number of manages and
subdividing an operation) may also be used.

Referring to FIG. 9, the AM manager 905 may interwork
with a FW Ul application and an AV Ul application. The AM
manager 905 receives a command from the FW Ul applica-
tion and the AV Ul application. When the command is related
to FW, the AM manager 905 transmits the command to the
FW manager 910. When the command is related to AV, the
AM manager 905 transmits the command to the AV manager
940. The FW manager 910 and the AV manager 940 perform
an operation corresponding to the command, and then may
transmit the result to the AM manager 905. The AM manager
905 transmits each application the result transmitted from the
FW manager 910 and the AV manager 940.

The command received from the FW Ul application by the
AM manager 905 may be, for example, a command for updat-
ing the rule pattern DB 920. In the presence of the command
for updating the rule pattern DB 920, the AM manager 905
transmits the command for updating (generating/deleting/
adding/changing) the rule pattern DB 920 to the FW manager
910. The FW manager 910 may update the rule pattern DB
920, and may notify the AM manager 905 about the updating
result.

The command received from the AV UI application (not
shown) by the AM manager 905 may be, for example, a
scanning command or a command for updating the virus
pattern DB 950. In the presence of the scanning command, the
AM manager 905 notifies the AV manager 940 about the
scanning command, and notifies the AV engine 960 about the
scanning command. The AV engine 960 may perform a scan-
ning operation on target data (e.g., the target data together
with the scanning command may be received by the AM
manager 905). The performing result is reversely transmitted
to the AV Ul application through the AV manager 940 and the
AM manager 905.

The command received from the AV UI application (not
shown) by the AM manager 905 may be a command for
updating the virus pattern DB 950. In this case, the AV man-
ager 940 may perform an updating operation corresponding
to the command.

FIG. 10 is a block diagram for explaining the FW engine
930, according to an exemplary embodiment.

Referring to FIG. 10, the FW engine 930 includes a first
matching unit 931. The first matching unit 931 performs a
similar operation as the matching unit 350 of FIG. 4, and thus
will be understood with reference to FIG. 4. A detailed
description of the first matching unit 931 will be omitted
herein.

A first hash matcher table 970 and a first sub matcher table
975 may be generated from rule patterns of the rule pattern
DB 920, which will be understood with reference to FIGS. 4
and 5.

FIG. 11 is a block diagram for explaining the AV engine
960, according to an exemplary embodiment.

Referring to FIG. 11, the AV engine 960 includes a second
matching unit 961. The second matching unit 961 performs a
similar operation as the matching unit 350 of FIG. 4, and thus
will be understood with reference to FIG. 4. A detailed
description of the second matching unit 961 will be omitted
herein.

A second hash matcher table 980 and a second sub matcher
table 985 may be generated from virus patterns of the virus
pattern DB 950. A method of generating the second hash
matcher table 980 and the second sub matcher table 985 will

10

15

20

25

30

35

40

45

50

55

60

65

16
be understood with reference to FIGS. 4, 6, and 7, and thus its
detailed description will be omitted herein.

The AV engine 960 may generate hash values of virus
patterns of the virus pattern DB 950 and a hash value for at
least a portion of the second target data.

The second matching unit 961 may perform hash-value
matching and LPM by using the second hash matcher table
980 and the second sub matcher table 985. The second match-
ing unit 961 includes a second hash value matching unit 961a
and a second light pattern matching unit 9615.

The second hash value matching unit 961¢ may match the
hash values of the virus patterns generated from the AV
engine 960 with the hash value for at least a portion of the
second target data.

When the hash-value matching is successful in the second
hash value matching unit 961a, the second light pattern
matching unit 9615 performs LPM.

When the LPM is successful, the AV engine 960 may
perform the EPM by using a virus pattern, the second target
data, and the second sub matcher table 985.

When the EPM is successful, the AV engine 960 performs
FPM by using a sub pattern matrix.

As a result of FPM, when the FPM is successful, the AV
engine 960 determines that the second target data is normal
data, and transmits the second target data to a nest destination.
On the other hand, as a result of FPM, when the FPM is not
successful, the AV engine 960 determines that the second
target data is virus-infected. According to the present exem-
plary embodiment, a pattern DB stores a black list. In addi-
tion, the pattern DB may store a white list. When the white list
is stored, as results of EPM or FPM, when the pattern match-
ing is successful, the second target data may be determined to
be normal data. The pattern matching includes the hash-value
matching, the LPM, the EPM or the FPM.

FIG. 12 is a functional block diagram for explaining an
operation of a fourth anti-malware system 1200 according to
another exemplary embodiment.

Referring to FIG. 12, the fourth anti-malware system 1200
may include a FW manager 1210, a rule pattern DB 1220, a
FW engine 1230, an AV manager 1240, a virus pattern DB
1250, an AV engine 1260, and a communication unit 1270.
The fourth anti-malware system 1200 of FIG. 12 may further
include the AM manager 905 of FIG. 9. The FW manager
1210, the rule pattern DB 1220, the FW engine 1230, the AV
manager 1240, the virus pattern DB 1250, and the AV engine
1260 of FIG. 11 are the same as or similar to the FW manager
910, the rule pattern DB 920, the FW engine 930, the AV
manager 940, the virus pattern DB 950, and the AV engine
960 described with reference to FIGS. 9 through 11, and thus
their detailed descriptions will be omitted herein.

However, the fourth anti-malware system 1200 further
includes the communication unit 1270. The communication
unit 1270 is a communication module that receives the first
target data from an external device, and transmits the first
target data to the external device. A combination of the FW
manager 1210, the rule pattern DB 1220, the FW engine
1230, the AV manager 1240, the virus pattern DB 1250, the
AV engine 1260, and the communication unit 1270 may be
embodied as a single SoC.

The first target data received through the communication
unit 1270 is input to the FW engine 1230. The FW engine
1230 may generate a hash value for the received first target
data, and may perform hash-value matching, LPM and EPM
described with reference to FIG. 3. As a result of the EPM,
when the first target data is determined to be normal data, the
FW engine 1230 may transmit the first target data to an

US 9,223,969 B2

17

application unit (not shown). The application unit (not
shown) may be, for example, a web browser.

FIG. 13 is a flowchart of an operating method of an anti-
malware system, according to an exemplary embodiment.

The operating method of FIG. 13 may be performed by any
one of the first through fourth anti-malware systems 300, 800,
900, and 1200. Hereinafter, the operating method will be
described in terms of the first anti-malware system 100.

The manager 310 may update and store the rule pattern DB
320 including rule patterns and the virus pattern DB 330
including virus patterns (operation S1302). The manager 310
may generate the rule pattern DB 320 by using a default rule
pattern or rule patterns that are set by a user through a FW UL

The FW engine 340 generates and stores the first hash
matcher table (‘first HMT”) 370 and the first sub matcher
table (“first SMT”) 375 by using hash values of rule patterns,
and the AV engine 360 may generate and store the second
hash matcher table (‘second HMT") 380 and the second sub
matcher table (‘second SMT”) 385 by using hash value for
virus patterns (operation S1304).

When the FW engine 340 receives target data (operation
S1306), the FW engine 340 may generate a hash value for at
least a portion of the received target data (hereinafter, referred
to as ‘first target data’) by applying the first target data to the
hash function (operation S1308).

The hash value matching unit 351 of the matching unit 350
may match hash values of the rule patterns generated in
Operation S1302 with a hash value for at least a portion of the
first target data generated in Operation S1308 (operation
S1310).

When hash-matching is successful (operation S1312-Y),
the light pattern matching unit 352 may perform LPM by
using a rule pattern, the first target data, and the first hash
matcher table 370 (operation S1314).

When the LPM of Operation S1314 is successful (opera-
tion S1316-Y), the FW engine 340 may perform EPM by
using the rule pattern, the first target data, and the first sub
matcher table 375 (operation S1318).

When the EPM of Operation S1318 is successful (opera-
tion S1320-Y), the FW engine 340 may determine that the
first target data is normal data, and may block the first target
data (operation S1322).

On the other hand, when there are no hash values that are
matched with each other in Operation S1312 (operation
S1312-N), the FW engine 340 may determine that the first
target data is normal data, and may allow the first target data
(operation S1324).

When the LPM of Operation S1314 fails (operation S1316-
N), the FW engine 340 may determine that the first target data
is normal data (operation S1324).

When the EPM of Operation S1318 fails (operation S1320-
N), the FW engine 340 may determine that the first target data
is abnormal data (operation S1324).

When the manager 310 receives target data, since the target
data is to be virus-scanned, the manager 310 may transmit the
received target data to the AV engine 360 (operation S1326).

The AV engine 360 may generate a hash value for the
received target data (hereinafter, referred to as ‘second target
data’) by applying the second target data to the hash function
(operation S1328). In Operation S1328, the AV engine 360
may generate a hash value for each sub data obtained by
dividing the second target data to have a predetermined size.

The hash value matching unit 351 of the matching unit 350
may match hash values of the virus patterns generated in
Operation S1302 with a hash value for at least a portion of the
second target data generated in Operation S1328 (operation
S1330).

10

15

20

25

30

35

40

45

50

55

60

65

18

When hash-value matching is successful (operation
S1332-Y), the light pattern matching unit 352 may perform
LPM by using a virus pattern, second target data, and the
second hash matcher table 380 (operation S1334).

When the LPM of Operation S1334 is successful (opera-
tion S1336-Y), the AV engine 360 may perform EPM by
using a virus pattern, second target data, and the second sub
matcher table 385 (operation S1338).

When the EPM of Operation S1338 is successful (opera-
tion S1340-Y), the AV engine 360 may perform FPM (opera-
tion S1342).

When the FPM of Operation S1342 is successful (opera-
tion S1344-Y), the AV engine 360 may determine that the
second target data is virus-infected data, and may block the
second target data (operation S1322). Thus, the AV engine
360 may not transmit the second target data to be virus-
scanned to an external device or an application unit (not
shown) using the second target data.

On the other hand, when there are no hash values that are
matched with each other in Operation S1332 (operation
S1332-N), the AV engine 360 may determine that the second
target data is normal data, and may allow the second target
data (operation S1324). Thus, the AV engine 360 may trans-
mit the second target data to be virus-scanned to an external
device or an application unit (not shown) using the second
target data.

When the LPM of Operation S1334 fails (operation S1336-
N), the AV engine 360 may determine that the second target
data is normal data (operation S1324).

When the EPM of Operation S1338 fails (operation S1340-
N), the AV engine 360 may determine that the second target
data is normal data (operation S1324).

When the FPM of Operation S1342 fails (operation S1344-
N), the AV engine 360 may determine that the second target
data is normal data, may allow the second target data, and may
transmit the second target data to a next destination (operation
S1324).

It should be understood that, in the exemplary embodiment
described above with reference to FIG. 13, the packet classi-
fying process has not been mentioned and only the rule pat-
tern matching operation has been explained for convenience
of understanding. In other words, operations S1308 to 1324
relate to the rule pattern matching operation and the packet
classifying operation may be performed between operations
S1308 and S1306.

FIG. 14 is a block diagram of a hardware configuration of
the anti-virus H/W 117 of FIG. 2, according to an exemplary
embodiment.

Referring to FIG. 14, the anti-virus H/W according to an
exemplary embodiment includes a system interface 201, a
system register 203, a memory interface 205, a memory 207,
a buffer 209, a hash matcher 211, an offset address generator
213, a hash queue (Q) buffer 215, a light pattern matcher 217,
and a scan Q buffer 219. According to an exemplary embodi-
ment, the matching unit of FIG. 14 may be used as the match-
ing unit of FIG. 3, 4, 8, or 9.

The system interface 201 supports an interface between the
anti-malware system 100 and an external device, and the
memory interface 205 is used to read out a DB or a file stored
in the anti-malware system.

The memory 207 may store data (for example, a pattern
hash value table) that is used by the hash matcher 211 to
perform a hash matching operation.

The buffer 209 may store target data read out by the
memory interface 205. In the present exemplary embodiment,
the buffer 209 may be configured in a dual bank form. The
target data is divided into sub-data as much as the buffer 209

US 9,223,969 B2

19

can store and the sub-data is stored in the two buffers 209. If
the matching unit of FIG. 14 is used as a part of the anti-virus
engine, the target data may be data such as a file. On the other
hand, if the matching unit of FIG. 14 is used as a part of the
firewall engine, the target data may be packet data.

The hash matcher 211 matches a hash value of the target
data and a hash matcher table 43. The hash matcher 211 stores
target data a hash value of which has been successfully
matched in the hash Q buffer 215.

If the hash value matching is successful, the offset address
generator 213 generates a memory address in which the hash
value matched in the sub matcher table is stored.

The hash Q buffer 215 makes the address generated by the
offset address generator 213 correspond to the target data and
stores them.

The light pattern matcher 217 matches a part of the target
data stored in the hash Q buffer 215 (for example, the middle
value and the tail value of the target data) and a virus pattern
(or an IP hash value of a rule pattern, a protocol hash value, or
a middle value of an IP address) with each other. The light
pattern matcher 217 stores the target data which has been
successfully matched by the light pattern matching operation
in the scan Q buffer 219.

The scan Q buffer 219 may store the target data which has
been successfully matched by the light pattern matching
operation.

If the anti-virus H/W of FIG. 14 is used as a part of the
anti-virus engine, the anti-virus engine may perform an exact
matching operation to match the target data stored in the scan
Q bufter 219 and the virus pattern exactly, and performs a full
pattern matching operation if the exact matching operation is
successful. The full pattern matching operation is performed
if the data has a grammatically complex pattern. In the case of
data of a grammatically simple pattern, only the exact pattern
matching operation is further performed.

On the other hand, if the anti-virus H/'W of FIG. 14 is used
as a part of the firewall engine, the firewall engine may per-
form an exact matching operation to match the target data
stored in the scan Q buffer 219 and the rule pattern exactly.

Of the above-described matching operations, the virus pat-
tern matching operation may be as described in detail in
Korean Patent Application No. 10-2010-0049566 (filed on
May 27, 2010), Korean Patent Application No. 10-2010-
0052981 (filed on Jun. 4, 2010), and Korean Patent Applica-
tion No. 10-2011-0049249 (filed on May 24, 2011). These
documents are hereby incorporated by reference to the same
extent unless otherwise indicated herein or otherwise clearly
contradicted by context.

FIG. 15 is a block diagram for explaining a virus scanning
operation in the anti-virus H/W 117, according to an exem-
plary embodiment.

Referring to FIG. 15, virus patterns to be used in the virus
scanning operation are stored in a virus pattern DB 41. A virus
pattern DB 41 may be one of the virus pattern DBs 330, 830,
950, and 1250 shown in FIGS. 3 through 12.

The hash matcher table 43 transmits and receives data to
and from the hash matcher 211, and is used to perform hash
matching in the hash matcher 211. The hash matcher table 43
may be one of the hash matcher tables 380 and 980 shown in
FIGS. 4 and 11.

When all virus patterns stored in the virus pattern DB 41
are loaded into the memory 207, and then a hash value gen-
erator (not shown) generates hash values for the all virus
patterns loaded into the memory 207, a pattern hash value
table is generated from the generated hash values. The pattern
hash value table may be stored in the memory 207.

10

15

20

25

30

35

40

45

50

55

60

65

20

The sub matcher table 44 transmits and receives data to and
from the light pattern matcher 217, and is used to perform
LPM and EPM. According to an exemplary embodiment, the
sub matcher table 44 may contain a duplicate pattern offset, a
middle value offset, a middle value, a tail value offset, a tail
value, and real pattern information. The sub matcher table 44
may be one of the sub matcher tables 375 and 975 shown in
FIGS. 4 and 10.

A sub pattern matrix 45 may include a sub pattern matching
result for each sub data constituting target data. The sub
pattern matrix 45 is used to perform FPM. When it is deter-
mined whether a virus pattern exists in corresponding sub
data, as a result of the EPM for all virus patterns and all sub
data, whether the virus pattern exists for respective sub data is
recorded in the sub pattern matrix 45.

The sub data of target data is loaded into the buffer 209, and
the loaded sub data is provided to the hash matcher 211.

To this end, the hash matcher 211 receives a pattern hash
value table 42, sub data, and the hash matcher table 43 from
the memory 207, the bufter 209, and a memory (not shown)
(e.g., the SRAM 130 of FIG. 2), respectively, and performs
hash matching.

The hash Q buffer 215 may store the target data when hash
values are matched with each other by the hash matcher 211.

Then, the light pattern matcher 217 may perform a match-
ing operation on a portion of the sub data by using the sub
matcher table 44. When light pattern matching is successful,
the light pattern matcher 217 outputs the sub data on which
the light pattern matching is successful towards the scan Q
buffer 219. An output result from the scan Q buffer 219 is used
to perform the EPM.

When the EPM is successful, an anti-malware system per-
forms full matching between sub data and a virus pattern,
included in a sub pattern matrix, by using the sub pattern
matrix 45. That is, matching between the virus pattern and
whole target data is performed on the target data stored in the
scan Q buffer 219.

FIG. 16 is a flowchart of an operating method of the anti-
virus H/W 117 in an anti-malware system, according to an
exemplary embodiment.

Referring to FIG. 16, when the anti-virus H/'W 117 is
initialized (operation S1601), the virus pattern DB 41 in
which virus patterns are stored is loaded into the memory 207
(operation S1603).

Target data (e.g., the second target data of FIG. 3) to be
virus-scanned is loaded into the buffer 209 by the size of the
buffer 209 (operation S1605).

The hash matcher 211 reads target data and a pattern hash
value table from the buffer 209 and the memory 207, respec-
tively, by predetermined sizes (operation S1607). The pattern
hash value table of the target data may be previously gener-
ated, and may be stored in the memory 207.

The hash matcher 211 matches hash valued of the target
data and the virus patterns, which are read in Operation
S1607, with each other (operation S1609).

The size of the read target data is set according to target
data count (operation S1611).

When the target data count is compared with the size of the
buffer 209, and the target data is identical to the size of the
buffer 209 (operation S1613-Y), the anti-virus H/W 117
changes a buffer that is currently used to another buffer (op-
eration S1615). When the buffer is changed, target data is
loaded into the changed buffer, and Operations S1605
through S1613 are repeated.

When the target data count is not identical to the size of the
buffer 209 (operation S1615-N), the anti-virus H/W 117
determines that the hash Q buffer 215 is full or not (operation

US 9,223,969 B2

21

S1617). When the hash Q buffer 215 is full, the anti-virus
H/W 117 finishes a corresponding operation. When the hash
Q buffer 215 is not full, Operations S1607 through S1615 are
repeated until the hash Q buffer 215 is full.

FIG. 17 is a flowchart of the matching operation of the hash
matcher 211 of Operation S1609 of FIG. 16, according to an
exemplary embodiment.

Referring to FIG. 17, the hash matcher 211 determines
whether a hash value for the target data exists in a pattern hash
value table (operation S1701).

When the hash value for the target data exists in the hash
matcher table, the hash matcher 211 determines whether pat-
tern indication exists in the hash value for the target data
(operation S1703).

When the hash indication exists in the hash value for the
target data, the hash matcher 211 determines whether the hash
Q buffer 215 is full (operation S1705).

When the hash Q buffer 215 is not full (operation S1705-
N), the hash matcher 211 updates the hash Q buffer 215 by
using the latest information (operation S1707). The latest
information is data generated by the offset address generator
213, and may include a memory address value for a real
comparison memory region corresponding to a hash value
when matching is successful, as a result of a matching opera-
tion of the hash matcher 211.

Then, when a reading operation is performed by the hash Q
buffer 215 (operation S1709-Y), the light pattern matcher 217
performs LPM (operation S1711).

On the other hand, when the hash Q buffer 215 is full
(operation S1705-Y), the hash matcher 211 sets the hash Q
buffer 215 to be full (operation S1713).

FIG. 18 is a flowchart for explaining the matching opera-
tion of the light pattern matcher 217 of Operation S1711,
according to an exemplary embodiment.

Referring to FIG. 18, the light pattern matcher 217 reads a
pattern from a memory determined by an offset of a hash
value for the read target data (operation S1801). That is, the
light pattern matcher 217 may read a middle value and a tail
value of a pattern of target data corresponding to a hash value,
and may read a middle value and a tail value of a virus pattern
from the sub matcher table 44.

The light pattern matcher 217 determines whether the
middle value of the target data is identical to the middle value
of the virus pattern (operation S1803).

When the middle value of the target data is identical to the
middle value of the virus pattern (operation S1803-Y), the
light pattern matcher 217 determines whether the tail value of
the target data is identical to the tail value of the virus pattern
(operation S1805).

When the tail value of the target data is identical to the tail
value of the virus pattern (operation S1805-Y), the light pat-
tern matcher 217 determines whether the scan Q buffer 219 is
full (operation S1807).

When the scan Q buffer 219 is not full (operation S1807-
N), the light pattern matcher 217 updates the scan Q buffer
219 by using the latest information (operation S1809). The
latest information may be a result of a matching operation of
the light pattern matcher 217, used to perform FPM.

When the scan Q buffer 219 is full (operation S1807-Y),
the light pattern matcher 217 sets the scan Q buffer 219 to be
full (operation S1811).

FIG. 19 is a block diagram for explaining a packet filtering
operation performed in the firewall H/'W 119, according to an
exemplary embodiment.

Referring to FIG. 19, the firewall engine matches packet
data and a rule pattern using the matching unit 119 configured
by hardware. In the present exemplary embodiment, the fire-

10

15

20

25

30

35

40

45

50

55

60

65

22

wall engine matches information included in a header of the
packet data such as IP address, protocol, or port and the rule
pattern.

Referring to FIG. 19, the rule pattern DB 51 may store at
least one packet rule and may include a direction of a packet,
an [P address, a protocol, a port, permission/block informa-
tion. The direction of the packet indicates a direction in which
the packet is forwarded and is denoted by ‘In’, ‘Out’, and
‘Both’, and the IP address indicates a source IP address and a
destination 1P address, the IP address protocol indicates a
type of a protocol used, such as Transmission Control Proto-
col (TCP), User Datagram Protocol (UDP), Internet Control
Message Protocol (ICMP), and All, and the port indicates a
port number to be set, and the permission/block information
indicates whether to permit or block the packet.

In the present exemplary embodiment, the hash matcher
211 performs a hash value matching operation using the hash
matcher table 53, and the light pattern matcher 217 performs
a light pattern matching operation using the sub matcher table
54. The hash matcher 211 matches a hash value of data stored
in the buffer 209 and the hash matcher table 53 in a hardware
level. The data the hash value of which has been matched is
stored in the hash Q buffer 215, and the light pattern matcher
217 matches the data stored in the hash Q buffer 215 and the
sub matcher table in a hardware level. If matching by the light
pattern matcher 217 is successtul, the matched data is stored
in the scan Q buffer 219, and the firewall engine performs an
exact pattern matching operation to determine whether the
data stored in the scan Q buffer 219 and the whole rule pattern
DB are identical to each other in a software level. After that,
the firewall engine passes or blocks the packet data according
to a result of the exact pattern matching.

Referring to FIG. 19, if packet data to be filtered is
received, the firewall engine performs a packet classifying
process with respect to the packet data first, and only if the
packet data needs to be pattern-matched as a result of the
packet classitying process, the firewall engine matches the
packet data and the rule pattern DB. The firewall engine uses
the matching unit 119 at least one time when performing the
packet classitying process and also uses the matching unit
119 when matching the packet data and the rule pattern DB.
A detailed description of this will be provided below with
reference to FIGS. 20 to 24.

The configuration of the firewall engine of FIG. 19 is
merely an example and any configuration that can filter the
packet data may be applied to the present disclosure.

FIG. 20 is a flowchart illustrating a packet filtering method
according to an exemplary embodiment.

Referring to FIG. 20, if the firewall engine 130 receives
packet data to be filtered (operation S2001), a header of the
packet data is converted into a pattern format (operation
S2003). A packet classifying process is performed with
respect to the packet data using header information of the
packet data (operation S2005). The pattern format in opera-
tion S2003 may be a format as shown in (a) of FIG. 5. In this
embodiment, operation S2003 is merely an example and the
header of the packet data to be filtered may not be necessarily
converted into the format as shown in (a) of FIG. 5. For
example, the exemplary embodiment of FIG. 20 may include
operation of extracting header information from the packet
data instead of operation S2003 and perform operation S2005
using the header information. The packet classifying process
will be explained in detail with reference to FIG. 21 below.

If the packet classifying process for the packet data is
completed, it is determined whether pattern matching opera-
tion S2007 will be performed or not. In other words, the
firewall engine does not perform the pattern matching opera-

US 9,223,969 B2

23

tion with respect to all of the packet data, and determines
whether to perform the pattern matching operation with
respect to the packet data by applying the packet classitying
process (operation S2005) to the packet data. Only if it is
determined that the pattern matching operation will be per-
formed, the pattern matching operation is performed. In the
pattern matching operation S2007, the packet data is matched
with the rule pattern stored in the rule pattern DB. Accord-
ingly, it is checked whether the packet data is matched with
the rule pattern or not (operation S2007)

For example, the firewall engine checks whether header
information of the packet data (IP address, port number, or
protocol) is matched with the rule pattern using the matching
unit of FIG. 14, for example. In performing operation S2007
using the matching unit of FIG. 14, the hash matcher 211
matches the hash value of the header of the packet data and the
hash value of the header of the rule pattern, and if the hash
values are matched with each other, the light pattern matcher
217 matches the middle value and the tail value of the header
of'the packet data and the middle value and the tail value of the
header of the rule pattern. If the middle values and the tale
values are matched with each other, the firewall engine per-
forms an exact matching operation to match the whole of the
header of the packet data and the whole of the header of the
rule pattern. If the exact matching is successful, the firewall
engine blocks the packet data, as will be explained. If the
packet data is matched with the rule pattern, the packet data is
allowed or blocked according to the rule pattern (operation
S2009). On the other hand, if the packet data is not matched
the rule pattern, it is determined that the matching is not
successful and thus the packet data is passed.

FIG. 21 is a flowchart illustrating a packet classifying
process according to an exemplary embodiment.

Referring to FIG. 21, a packet classifying process includes
operations S2101 to S2119, and, if it is determined that packet
data is to be pattern-matched as a result of the packet classi-
fying process, the firewall engine performs a pattern match-
ing operation (operation S2121). According to an exemplary
embodiment, the firewall engine performs the packet classi-
fying process using at least one flag.

The flag may include an IP flag, a protocol flag, a port flag,
aflag indicating whether packet data is classified in relation to
IP matching, a flag indicating whether packet data is classi-
fied in relation to protocol matching, and a flag indicating
whether packet data is classified in relation to port matching.
In the present exemplary embodiment, the firewall engine
may set a value of each flag with reference to the rule pattern
DB and/or the sub matcher table shown in (¢) of FIG. 5. The
firewall engine may store the flag value in the system register
203 and also may store the flag value in a storage unit (not
shown) other than the system register 203. The firewall engine
sets the IP flag to ‘All” if there is at least one rule pattern that
allows all IP addresses to pass among the rule patterns. In the
same way, the firewall engine sets the protocol flag to ‘All’ if
there is at least one rule pattern that allows all protocols to
pass among the rule patterns. Also, the firewall engine sets the
port flag to “All’ if there is at least one rule pattern that allows
all ports to pass among the rule patterns. The above operations
of setting the flags may be performed before the packet clas-
sifying process is performed or while the packet classifying
process is performed.

The flags indicating whether packet data is classified or not
are set to ‘Yes’ or ‘No’ by the firewall engine during the IP
matching operation, the protocol matching operation, and the
port matching operation. This will be explained in detail
below with reference to FIGS. 22, 23, and 24.

10

15

20

25

30

35

40

45

55

60

65

24

Ifthe firewall engine receives packet data to be filtered, the
firewall engine determines whether the IP flag is ‘All’ or not
by checking the IP flag (operation S2101). Ifthe IP flag is not
‘All’, an IP matching process is performed with respect to the
packet data (operation S2103). The IP matching process will
be explained in detail with reference to FIG. 22 below.

After the IP matching process is completed, if the flag
indicating whether packet data is classified in relation to IP
matching is set to ‘N’ (operation S2105: N), it is determined
whether the protocol flag is “‘All” or not (operation S2107).

The flag indicating whether packet data is classified in
relation to IP matching is set to one of “Y” and ‘N’ during the
IP matching process, as will be explained with reference to
FIG. 22. If the protocol flag is not ‘All’, the firewall engine
performs a protocol matching process (operation S2109). The
protocol matching operation will be explained in detail with
reference to FIG. 24 below.

After the protocol matching process is completed, if the
flag indicating whether packet is classified in relation to pro-
tocol matching is set to ‘N’ (operation S2111: N), the firewall
engine determines whether the port flag is set to “‘All’ or not
(operation S2113). If the port flag is set to ‘All’, it is deter-
mined whether the IP flag is set to “‘All’ (operation S2119). If
the IP flag is set to ‘All’, the firewall engine finishes the rule
pattern matching operation with respect to the packet data.
However, if the IP flag is not ‘All’ (operation S2119: N), a
pattern matching operation is performed (operation S2121).

If the port flag is not set to “All’ (operation S2113: N), the
firewall engine performs a port matching process (operation
S2115). The port matching process will be explained in detail
with reference to FIG. 24 below.

After the port matching process is completed, if the flag
indicating whether packet data is classified in relation to port
matching is set to ‘N’ (operation S2117: N), a pattern match-
ing operation is performed with respect to the packet data
(operation S2121).

On the other hand, if the flags indicating whether packet
data is classified or not are set to ‘Y’ (operation S2105:Y,
operation S2111: Y, and operation S2117: Y), the firewall
engine finishes the rule pattern matching operation with
respect to the packet data.

FIG. 22 is a flowchart illustrating an IP matching process
according to an exemplary embodiment.

The firewall engine performs a hash matching process to
determine whether a hash value of an IP address included in
a header of packet data is matched with a hash value of an IP
address of rule patterns included in the rule pattern DB (op-
eration S2201). According to an exemplary embodiment, the
hash matcher 211 of the firewall engine matches the hash
value of the IP address included in the header of the packet
data and the hash matcher table shown in (b) of FIG. 5. For
example, if the hash value of the IP address included in the
header of the packet data is ‘X, it is determined that the hash
values are matched with each other since the hash matcher
table displays that ‘X exists.

If matching is not achieved by the hash matching process
(operation S2203), the firewall engine changes the flag indi-
cating whether packet data is classified or not in relation to IP
matching to ‘Y’ meaning that the packet is classified (opera-
tion S2205). On the other hand, if matching is achieved by the
hash matching process (operation S2203), the firewall engine
performs a sub matching process to perform a matching
operation with respect to the packet using the sub matcher
table (operation S2207). According to an exemplary embodi-
ment, the light pattern matcher 217 of the firewall engine

US 9,223,969 B2

25

matches a middle value and a tail value of the IP address
included in the header of the packet data and the sub matcher
table shown in (¢) of FIG. 5.

If matching is not achieved by the sub matching process
(operation S2209), the firewall engine changes the flag indi-
cating whether packet data is classified or not in relation to IP
matching to ‘Y’ meaning that the packet is classified (opera-
tion S2205). On the other hand, if matching is achieved by the
sub matching process (operation S2209), the firewall engine
identifies an ispro value indicating whether a rule applicable
to all protocols exists in the sub matcher table or not, and an
isport value indicating whether a rule applicable to all ports
exists (operation S2211). If the isport value is ‘1°, there is at
least one rule pattern applicable to all ports among the rule
patterns of the rule pattern DB, and if the ispro value is ‘1°,
there is at least one rule pattern applicable to all protocols
among the rule patterns of the rule pattern DB.

If the ispro value does not equal to ‘1’ in operation S2213,
the firewall engine changes the protocol flag to ‘Not All’
(operation S2217). On the other hand, if the ispro value is “1°,
the firewall engine determines whether the isport value equals
to 1 or not (operation S2215).

If'the isport value does not equal to “1°, the firewall engine
changes the port flag to ‘Not All’ (operation S2219).

The flags indicating whether packet data is classified or
not, the protocol flags, the port flags in the embodiment of
FIG. 22 correspond to the flag indicating whether packet data
is classified or not used in operation S2105 of FIG. 21, the
protocol flag used in operation S2107, and the port flag used
in operation S2113, respectively.

FIG. 23 is a flowchart illustrating a protocol matching
process according to an exemplary embodiment.

The firewall engine performs a hash matching process to
determine whether a hash value of a protocol included in a
header of packet data is matched with a hash value of a
protocol of rule patterns included in the rule pattern DB
(operation S2301). According to an exemplary embodiment,
the hash matcher 211 of the firewall engine matches the hash
value of the protocol included in the header of the packet data
and the hash matcher table shown in (b) of FIG. 5. For
example, if the hash value of the protocol included in the
header of the packet data is *Z’, it is determined that the hash
values are not matched with each other since the hash matcher
table displays that ‘Z” does not exist.

If matching is achieved by the hash matching process (op-
eration S2303), the firewall engine finishes the hash matching
process and performs a next operation (for example, opera-
tion S2111 of FIG. 21). On the other hand, if matching is not
achieved by the hash matching process, the firewall engine
changes the flag indicating whether packet data is classified or
not in relation to protocol matching Y’ meaning that the
packet is classified (operation S2305). The flag indicating
whether packet data is classified or not corresponds to the flag
indicating whether packet data is classified or not used in
operation S2111 of FIG. 21.

In the present exemplary embodiment, a verification pro-
cess is performed only by the hash matching process without
performing a sub matching process, since the number of cases
in which the protocol matching is performed is low. However,
this is merely an example and the sub matching process may
be performed in the case of the protocol matching.

FIG. 24 is a flowchart illustrating a port matching process
according to an exemplary embodiment.

The firewall engine performs a hash matching process to
determine whether a hash value of a port included in a header
of packet data is matched with a hash value of a port of rule
patterns included in the rule pattern DB (operation S2401).

30

40

45

55

26

According to an exemplary embodiment, the hash matcher
211 of the firewall engine matches the hash value of the port
included in the header of the packet data and the hash matcher
table shown in (b) of FIG. 5. For example, if the hash value of
the protocol included in the header of the packet data is ‘A’, it
is determined that the hash values are matched with each
other since the hash matcher table displays that ‘A’ exists.

If matching is not achieved by the hash matching process
(operation S2403), the firewall engine changes the flag indi-
cating whether packet data is classified or not in relation to
port matching to ‘Y’ meaning that the packet is classified
(operation S2409).

If matching is achieved by the hash matching process (op-
eration S2403), the firewall engine performs a sub matching
process with respect to the packet data (operation S2405).
According to an exemplary embodiment, the light pattern
matcher 217 of the firewall engine matches the hash value of
the IP address and the hash value of the protocol included in
the header of the packet data and the sub matcher table shown
in (¢) of FIG. 5.

If matching is not achieved by the sub matching process
(operation S2407), the firewall engine change the flag indi-
cating whether packet data is classified or not in relation to
port matching is changed to Y’ meaning that the packet is
classified (operation S2409). On the other hand, if matching
is achieved by the sub matching process, the firewall engine
finishes the port matching process and performs operation
S2117 of FIG. 21.

The flag indicating whether packet data is classified or not
used in operation S2409 of FIG. 24 corresponds to the flag
indicating whether packet data is classified or not used in
operation S2117 of FIG. 21.

FIGS. 25 and 26 explain the effects of using an SOC of an
exemplary embodiment.

Referring to FIG. 25, a difference in the speed of'a scanning
engine between the scanning engine operating in an applica-
tion layer and the scanning engine operating in an SOC (50
MHz processor) is illustrated. The amount of time required to
scan a certain number of files, i.e., the speed, of the scanning
engine operating in the application layer is represented by
bars (800 MHz processor) and the amount of time required for
the scanning engine operating in the SOC is represented by
the lines. The line including the X data points, indicates the
time it takes for an Anti-Virus (AV) engine implemented by
software and hardware logic (50 MHz SoC processor) per-
forms scanning, and the line including the triangle data
points, indicates the time it takes when the scanning is per-
formed by software only.

As the amount of target data to be scanned increases, a SOC
AV engine implemented in software and hardware logic
shows higher performance than a SOC AV engine imple-
mented in software only. If the number of files to be scanned
is about 2000, the SOC AV engine implemented by software
and hardware takes almost half as much time when compared
to the SOC AV implemented by software only.

In FIG. 26, the memory utilization and a scanning time in
a mobile AV engine which is implemented in software only.

Itcan be seen that there is similar memory utilization for an
AV scanning operation with a low number of files to be
scanned, but as the number of files to be scanned increases, it
takes much time to scan the files.

Therefore, as the scanning time is longer, battery consump-
tion increases.

FIG. 27 illustrates an amount of power consumed in an AV
engine. Products 1 and 2 are AV engines implemented by
software only, not SOC-based AV engines. One product con-
sumes about 160 mA and another product consumes about

US 9,223,969 B2

27
200 mA. However, the SOC AV engine of the exemplary
embodiment consumes about 129.9 mA.

FIG. 28 illustrates a scanning time of an AV engine. Prod-
ucts to be compared are all AV engines implemented by
software only versus SOC-based AV engines. Referring to
FIG. 28, the CPU usage of the compared software only prod-
ucts is nearly 100%, while SOC-based AV engine is nearly
30%. Also, the present exemplary embodiment applies a full
scanning method, whereas the compared products only apply
afast scanning method (which does not scan all the files, as in
the full scanning method), with the exception of one com-
pared product. Therefore, in practice, there may be a greater
difference in the scanning time and the CPU usage than
shown in FIG. 28.

FIGS. 29(a), 29(b), and 29(c) are views illustrating a state
of a CPU when different AV software is installed in an
Android OS phone and is operated. The three different AV
software use nearly 100% of the CPU (*“Total” “CPU Usage”
shown in green) during a scanning operation.

On the other hand, FIGS. 30(a) and 30(b) are views illus-
trating a state of a CPU when AV scanning is performed using
the SOC of the present exemplary embodiment. The CPU
usage is equal to or less than 30%. In other words, less CPU
capacity is used and operations are performed at a high speed.
Therefore, battery consumption is greatly reduced.

If the SOC-based AV is used, a main processor maintains
security using less CPU or memory capacity and the CPU has
spare space to allow a different application to be used. There-
fore, the user can use the different application effectively.

According to one or more exemplary embodiments, the
anti-virus H/W and the firewall H/R may be configured by
hardware logic so that they can perform simple and swift
operations. Also, since the hash matcher, which is a bit table,
matches a hash value having a small size and output through
a hash function, the hash matcher has an advantage of per-
forming a comparing operation at a high speed. Also, since
the light pattern matcher accesses based on the hash value as
an index, a result of matching can be swiftly output. Also, if
the hash values collide with each other due to a multi-pattern,
a sub matcher table regarding collision may be configured to
be able to process the hash values in collision.

According to one or more exemplary embodiments, mal-
ware may be swiftly filtered and scanned in a mobile device
having a limited resource.

According to one or more exemplary embodiments, by
using a CPU in a SoC itself in addition to a main CPU of a
mobile device, the CPU may operate as an anti-malware
system without loading the main CPU. Since the anti-mal-
ware system may include various components that are inte-
grated with each other by combining hardware logic and
software modules in the form of SoC, the anti-malware sys-
tem may perform an operation of software, which is to be
swiftly changed. In addition, the changed matter of the soft-
ware may be reflected, and an updating process of a virus DB
may be smoothly responded. In particular, requirements for
high performance and low power consumption are satisfied in
a portable device.

Moreover, filtering may be swiftly processed for a packet
by using a FW engine that is configured by hardware logic on
a SoC, and a matching result for a file may be swiftly pro-
cessed for a pattern of a file by using an anti-virus engine that
is configured by hardware logic on the SoC.

In addition, since the same pattern may be detected by
directly performing operations related to patterning matching
on the SoC, an algorithm may always be easily performed if
necessary.

20

40

45

50

55

65

28

While exemplary embodiments have been particularly
shown and described above, it will be understood by those of
ordinary skill in the art that various changes in form and
details may be made therein without departing from the spirit
and scope of the present invention as defined by the following
claims.

What is claimed is:

1. An operating method of an anti-malware system, the
operating method comprising: filtering first target data by
matching the first target data with rule patterns;

and scanning second target data by matching the second

target data with malware patterns, wherein the filtering
and the scanning are performed on a system-on-chip
(SoC), wherein the filtering of the first target data com-
prises:

packet classifying the first target data using at least one flag

to determine whether the pattern matching is to be per-
formed,

when it is determined that pattern matching is to be per-

formed for the first target data as a result of the packet
classifying, carrying out a pattern matching operation
between the first target data and the rule patterns;
wherein the filtering the first target data comprises: match-
ing a hash value for a rule pattern, among the rule pat-
terns, with a hash value for at least a portion of the first
target data; when the matching the hash value is success-
ful, matching the rule pattern with the first target data;

wherein the matching the hash value comprises matching a

hash value for at least one of an Internet Protocol (IP)
address, a protocol, and a port, which are included in a
header of the first target data, with a hash value for at
least one of an IP address, a protocol, and a port, which
are included in the rule pattern; and

allowing the first target data to pass by skipping the pattern

matching operation between the first target data and the
rule patterns, based on a value of the at least one flag that
is set without comparing the first target data and the rule
patterns.

2. The operating method of claim 1, wherein:

the first target data is received from a device in which the

SoC is installed; and

the filtering is performed on the first target data received

from the device.

3. The operating method of claim 1, wherein:

the first target data is received from an external device

through a communication unit included in the SoC; and
the filtering is performed on the first target data received
through the communication unit.
4. The operating method of claim 1, further comprising
storing the rule patterns and the malware patterns in a storage
unit included in the SoC.
5. The operating method of claim 1, further comprising:
setting an [P flag to ‘All’, if a rule pattern that allows all IP
addresses to pass is included among the rule patterns;

setting a protocol flag to ‘All’, if a rule pattern that allows
all protocols to pass is included among the rule patterns;
and

setting a port flag to ‘All’, if a rule pattern that allows all

ports to pass is included among the rule patterns,
wherein the packet classitying is performed using the IP
flag, the protocol flag, and the port flag.

6. The operating method of claim 5, wherein, if the IP flag
is set to ‘All’ and the port flag is set to ‘All’, the pattern
matching the first target data is not performed.

7. The operating method of claim 1, wherein:

the packet classifying comprises IP matching to match an

IP address included in the first target data with an IP

US 9,223,969 B2

29

address included in each of the rule patterns, if there is no
rule pattern that allows all IP addresses to pass among
the rule patterns; and

if a rule pattern that allows all IP addresses to pass is

included among the rule patterns, the IP matching is not
performed.

8. The operating method of claim 7, wherein the pattern
matching the first target data is performed only if the IP
matching is successful as a result of the IP matching process.

9. The operating method of claim 7, wherein the IP match-
ing comprises, if the IP matching is successful, checking
whether a rule pattern which is successful in the IP matching
is applied to all protocols, and if the rule pattern which is
successful in the rule matching is applied to all protocols,
setting a protocol flag to “All’.

10. The operating method of claim 9, wherein:

the packet classifying further comprises, if the protocol

flag is not set to ‘All’, protocol matching to match a
protocol included in the first target data with a protocol
included in the rule pattern which is successful in the IP
matching,

wherein, if the protocol flag is set to ‘All’, the protocol

matching is not performed.

11. The operating method of claim 10, wherein the pattern
matching the first target data is performed only if protocol
matching is successful as a result of the protocol matching.

12. The operating method of claim 10, wherein, if protocol
matching is successful as a result of the protocol matching,
the packet classifying further comprises checking whether
the rule pattern which is successful in the protocol matching
is applied to all ports, and, if the rule pattern which is suc-
cessful in the protocol matching is applied to all ports, setting
a port flag to “All’.

13. The operating method of claim 12, wherein:

the packet classifying further comprises, if the port flag is

not set to ‘All’, port matching to match a port included in
the first target data with a port included in the rule pattern
which is successful in the IP matching; and

if the port flag is set to ‘All’, the port matching is not

performed.

14. The operating method of claim 13, wherein the pattern
matching the first target data is performed only if the port
matching is successful and if the IP matching is successful.

15. The operating method of claim 1, wherein the pattern
matching between the first target data and the rule patterns
comprises:

hash value matching to match a hash value of an IP address

included in the first target data with a hash value of an IP
address included in each of the rule patterns;

if the hash value matching is successful, light pattern

matching to match a middle value and a tail value of an
IP address included in a rule pattern which is successful
in the hash value matching with a middle value and a tail
value of the IP address included in the first target data;
and

if the light pattern matching is successtul, exact pattern

matching to match a rule pattern which is successful in
the light pattern matching with the first target data.

16. The operating method of claim 15, wherein:

the hash value matching comprises matching a hash

matcher table with the hash value of the IP address of the
first target data; and

the hash matcher table comprises a hash value regarding an

IP address included in each of the rule patterns and an
item indicating at least one of presence and absence of
each hash value.

5

10

15

20

25

30

35

40

45

50

55

60

65

30

17. The operating method of claim 15, wherein:

the light pattern matching comprises matching a sub
matcher table with a partial value of the IP address
included in the first target data; and

the sub matcher table comprises an item indicating a hash
value of an IP address included in each of the rule pat-
terns, and an item indicating a part of the IP address.

18. The operating method of claim 17, wherein the part of
the IP address is a middle value and a tail value of the IP
address.

19. The operating method of claim 17, wherein:

the sub matcher table further comprises an item indicating
an address in which the rule patterns are stored; and

the exact pattern matching comprises referring to an
address of a rule pattern which is successful in the light
pattern matching among addresses in which the rule
patterns are stored, and matching the rule pattern stored
in the referred address with the first target data.

20. The operating method of claim 17, wherein:

the sub matcher table further comprises a next item; and

the next item indicates data based on which information on
a different rule pattern that has an IP hash value equal to
a hash value of an IP address displayed on the item
indicating the hash value of the IP address is searched
for.

21. The operating method of claim 20, wherein the data
based on which the information on the different rule pattern is
searched for is an address in which the information on the
different rule pattern is stored.

22. The operating method of claim 1, wherein the filtering
the second target data comprises:

matching a hash value for a malware pattern, among the
malware patterns, with a hash value for at least a portion
of the second target data; and

when the matching of the hash value is successful, match-
ing the malware pattern with the second target data.

23. The operating method of claim 22, wherein the match-
ing the hash value comprises matching a hash value for a
portion of the second target data with a hash value for the
malware pattern.

24. The operating method of claim 22, wherein the match-
ing the hash value for the malware pattern with the hash value
for at least a portion of the second target data comprises:

light pattern matching in which a portion of the malware
pattern is matched with a portion of the second target
data; and

when the light pattern matching is successful, exact match-
ing in which the malware pattern is matched with the
second target data.

25. The operating method of claim 24, wherein the exact
matching comprises matching a third position value and a
fourth position value of the second target data with a third
position value and a fourth position value of the malware
pattern.

26. The operating method of claim 24, wherein the exact
matching comprises matching the second target data with the
malware pattern.

27. An anti-malware system for receiving target data, and at
least one of scanning and filtering anti-malware, the anti-
malware system comprising:

a storage unit which stores a malware pattern;

a firsthash value matching unit which matches a hash value
of at least a portion of the target data with a hash value of
the malware pattern;

a first light pattern matching unit which matches at least
one of a middle value and a tail value of the malware
pattern with at least one of a middle value and a tail value

US 9,223,969 B2

31

of the at least a portion of the target data, when the
matching of the hash value is successful; and

an exact pattern matching unit which, when the light pat-
tern matching is successful, refers to an address of a
malware pattern which is successful in the light pattern
matching among addresses in which malware patterns
are stored, and

matches each position of the malware pattern, stored in the
referred address, with each corresponding position of
the target data;

wherein the filtering the first target data comprises: match-
ing a hash value for a rule pattern, among the rule pat-
terns, with a hash value for at least a portion of the first
target data; when the matching the hash value is success-
ful, matching the rule pattern with the first target data;

wherein the matching the hash value comprises matching a
hash value for at least one of an Internet Protocol (IP)
address, a protocol, and a port, which are included in a
header of the first target data, with a hash value for at
least one of an IP address, a protocol, and a port, which
are included in the rule pattern.

28. The anti-malware system of claim 27, wherein:

the malware pattern comprises a malware pattern and arule
pattern;

the received target data is to be filtered; and

the first hash value matching unit matches the rule pattern
and the target data, and the first light pattern matching
unit matches the rule pattern and the target data, when
the received target data is classified as data to be filtered
by using at least one flag, wherein a value of the at least
one flag is set based on the rule pattern prior to at least
one of matching by the first hash value matching unit and
the first light pattern matching unit.

29. The anti-malware system of claim 28, wherein, when
the received target data is to be malware-scanned, the first
hash value matching unit matches the malware pattern and the
target data, and the first light pattern matching unit matches
the malware pattern and the target data.

30. The anti-malware system of claim 27, further compris-
ing:

an anti-malware manager which detects the target data as
data to be malware-scanned,

wherein the malware comprises a malware pattern and a
rule pattern, and

wherein the first hash value matching unit matches the rule
pattern and the target data and the first light pattern
matching unit matches the rule pattern and the target
data according to an order of the anti-malware manager,
or the first hash value matching unit matches the mal-
ware pattern and the target data and the first light pattern
matching unit matches the malware pattern and the tar-
get data.

31. The anti-malware system of claim 27, further compris-

ing:

a second hash value matching unit which matches a hash
value of at least a first portion of the target data with a
hash value of the malware pattern; and

a second light pattern matching unit which, when the
matching of the hash value is successful, matches the
malware pattern with a second portion of the target data,

wherein the malware pattern comprises a malware pattern
and a rule pattern,

wherein, when the target data is to be filtered, the first hash
value matching unit matches the target data to be filtered
with the rule pattern and the first light pattern matching
unit matches the target data to be filtered with the rule
pattern, and

10

15

20

30

35

40

45

50

55

60

65

32

wherein, when the target data is to be malware-scanned, the
second hash value matching unit and the second light
pattern matching unit matches the target data to be
scanned with the malware pattern and the second light
pattern matching unit matches the target data to be
scanned with the malware pattern.

32. The anti-malware system of claim 31, further compris-

ing:

an anti-malware manager which receives the target data to
be malware-scanned.

33. The anti-malware system of claim 32, wherein the
second hash value matching unit performs an operation on the
target data received by the anti-malware manager and the
malware pattern and the second light pattern matching unit
performs an operation on the target data received by the
anti-malware manager and the malware pattern.

34. The anti-malware system of claim 27, wherein the first
hash value matching unit and the first light pattern matching
unit are embodied by hardware.

35. The anti-malware system of claim 34, wherein the
hardware comprises:

a buffer which stores the target data;

a hash matcher which matches a hash value for a portion of
the target data stored in the buffer with a hash value for
the malware pattern;

a hash Queue (Q) buffer which, when the hash value for a
portion of the target data stored in the buffer is matched
with the hash value for the malware pattern by the hash
matcher, stores the target data; and

a light pattern matcher which matches a first position value
and a second position value of the target data stored in
the hash Q buffer with a first position value and a second
position value of the malware pattern.

36. The anti-malware system of claim 35, wherein:

the hash matcher matches a hash matcher table indicating
whether the hash value of the malware pattern exists
with the hash value for the portion of the target data; and

when the matching is successtul, the target data is stored in
the hash Q buffer.

37. The anti-malware system of claim 36, wherein:

the hardware further comprises a scan Q bufter;

the light pattern matcher matches a sub matcher table com-
prising at least one record comprising the hash value of
the malware pattern, the first position value, and the
second position value, with the first position value and
the second position value of the target data; and

when the matching is successtul, the target data is stored in
the scan Q buffer.

38. The anti-malware system of claim 37, wherein match-
ing the malware pattern with an entirety of the target data is
performed on the target data stored in scan Q buffer.

39. The anti-malware system of claim 37, wherein the
hardware further comprises an offset address generator which
generates an address for storing a record comprising a hash
value of target data stored in the hash Q bufter, from among
the at least one record of the sub matcher table.

40. The anti-malware system of claim 39, wherein the
address generated by the offset address generator is related to
target data stored in the hash Q buffer, and is stored in the hash
Q buffer, together with the target data.

41. The anti-malware system of claim 27, further compris-
ing a device,

wherein the storage unit and the first hash value matching
unit are embodied as a system-on-chip (SoC), and

wherein the SoC is detachably installed in the device,
receives the target data from the device, performs the at

US 9,223,969 B2

33

least one of the anti-malware scanning and the filtering
operation, and notifies the device about a result of the
performing.

42. A method of an anti-malware processor, the method

comprising:

filtering by a first logic unit of the processor, input data
based on a rule; and

scanning by a second logic unit of the processor, for mal-
ware in the data, the filtering and the scanning being
performed at a same time,

wherein the filtering comprises:

packet classifying the input data using at least one flag to
determine whether pattern matching is to be performed;

when it is determined that pattern matching is to be per-
formed for the input data as a result of the packet clas-
sifying, performing a pattern matching operation
between the input data and rule patterns according to the
rule;

wherein the filtering the first target data comprises: match-
ing a hash value for a rule pattern, among the rule pat-
terns, with a hash value for at least a portion of the first
target data; when the matching the hash value is success-
ful, matching the rule pattern with the first target data;

wherein the matching the hash value comprises matching a
hash value for at least one of an Internet Protocol (IP)
address, a protocol, and a port, which are included in a
header of the first target data, with a hash value for at
least one of an IP address, a protocol, and a port, which
are included in the rule pattern; and

allowing the input data to pass by skipping the pattern
matching operation between the input data and the rule
patterns, based on a value of the at least one flag that is
set without comparing the input data and the rule pat-
terns.

43. An anti-malware device comprising: a processor com-

prising:

a firewall engine which comprises first logic units and
which filters input data based on a rule, and determines
whether the input data contains data to be scanned for
malware; and

an anti-malware engine which comprises second logic
units and scans for malware in the input data, if the
firewall engine determines that the input data contains
the data to be scanned for malware,

wherein:

the firewall engine packet classifies the input data using at
least one flag to determine whether the input data is
classified as data to be rule pattern-matched,

10

15

20

25

30

35

40

34

when it is determined that the input data is classified as the
data to be rule pattern-matched, the firewall engine per-
forms a pattern matching operation between the input
data and rule patterns, according to the rule;
wherein the filtering the first target data comprises: match-
ing a hash value for a rule pattern, among the rule pat-
terns, with a hash value for at least a portion of the first
target data; when the matching the hash value is success-
ful, matching the rule pattern with the first target data;
wherein the matching the hash value comprises matching a
hash value for at least one of an Internet Protocol (IP)
address, a protocol, and a port, which are included in a
header of the first target data, with a hash value for at
least one of an IP address, a protocol, and a port, which
are included in the rule pattern; and
the firewall engine allows the input data to pass by skipping
the pattern matching operation between the input data
and the rule patterns, based on a value of the at least one
flag that is set without comparing the input data and the
rule patterns.
44. A hardware firewall engine comprising at least one
processor, the at least one processor configured to perform a
filtering operation with respect to packet data based on a
packet rule, and determine whether the packet data contains
data to be scanned for malware, wherein the filtering opera-
tion comprises:
packet classifying the packet data using at least one flag to
determine whether pattern matching is to be performed;

when it is determined that pattern matching is to be per-
formed for the packet data as a result of the packet
classifying, pattern matching between the packet data
and rule patterns according to the packet rule;

wherein the filtering the first target data comprises: match-

ing a hash value for a rule pattern, among the rule pat-
terns, with a hash value for at least a portion of the first
target data; when the matching the hash value is success-
ful, matching the rule pattern with the first target data;

wherein the matching the hash value comprises matching a

hash value for at least one of an Internet Protocol (IP)
address, a protocol, and a port, which are included in a
header of the first target data, with a hash value for at
least one of an IP address, a protocol, and a port, which
are included in the rule pattern; and

allowing the packet data to pass by skipping the pattern

matching between the packet data and the rule patterns,
based on a value of the atleast one flag that is set without
comparing the packet data and the rule patterns.

#* #* #* #* #*

